Abstract:
A reinforcing metallic patch is electroplated to cover the degraded portion without covering the non-degraded portion of metallic workpiece, where the electrodeposited metal of metallic patch has an average grain size of 1000 nm or less. An independent claim is also included for process for in-situ electroforming structural reinforcing layer.
Abstract:
A reinforcing metallic patch is electroplated to cover the degraded portion without covering the non-degraded portion of metallic workpiece, where the electrodeposited metal of metallic patch has an average grain size of 1000 nm or less. An independent claim is also included for process for in-situ electroforming structural reinforcing layer.
Abstract:
Lightweight articles comprising a polymeric material at least partially coated with a fine-grained metallic material are disclosed. The fine-grained metallic material has an average grain size of 2nm to 5,000nm, a thickness between 25 micron and 5cm, and a hardness between 200VHN and 3,000 VHN. The lightweight articles are strong and ductile and exhibit high coefficients of restitution and a high stiffness and are particularly suitable for a variety of applications including aerospace and automotive parts, sporting goods, and the like.
Abstract:
Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance compared to either uncoated or equivalent thickness Cr coated substrate. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial and hydrophobic properties.
Abstract:
Articles for automotive, aerospace, manufacturing and defence industry applications including shafts or tubes used, for example, as golf club shafts, ski and hiking poles, fishing rods or bicycle frames, skate blades and snowboards are at least partially coated with an electrodeposited metal, metal alloy or metal matrix composite coating layer. The coating layer having a quasi-isotropic microstructure, a thickness of higher than 30µm and an average grain size between 0.004µm and 10µm. The coating layer provides articles of high resilience, high yield strength, scratch and wear resistance and hardness, and appealing appearance.
Abstract:
Fine-grained (average grain size 1nm to 1,000nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.