Abstract:
A battery module includes a battery module housing, a heat exchanger including a plurality of fins disposed in the housing, a first lithium ion battery cell and a second lithium ion battery cell disposed within the battery module housing. The first lithium ion battery cell and the second lithium ion battery cell are separated by a fin of the plurality of fins. The module includes a temperature sensing component coupled to the fin separating the first and second battery cells. Filler material is disposed within the housing and between the battery cells and the fins to mechanically restrain the battery cells within the battery module housing. The filler materials conduct thermal energy between the battery cells and the fin. The filler material covers a free end of the fin and the temperature sensing component. The temperature sensing component is coupled to a conductor extending out of the filler material.
Abstract:
A method of manufacturing a battery module for use in a vehicle is presented. The method may include disposing battery cells into a lower housing and disposing a lid assembly over the battery cells. The lid assembly may include a lid and bus bar interconnects disposed on the lid. The method may also include disposing a printed circuit board (PCB) assembly onto the lid assembly and electrically coupling portions of the lid assembly, portions of the PCB assembly, and the battery cells to each other.
Abstract:
An electrochemical cell includes a cell element and a current collector disposed in a housing that includes a vent. The current collector includes an outer member and an inner member coupled together by one or more flexible arms. The outer member is coupled to the cell element and the inner member is coupled to the vent, such that the flexible arms allow axial movement of the inner member with respect to the outer member when the vent moves from an undeployed position to a deployed position. The housing may include a shoulder that holds the cell element in the housing. The electrochemical cell may also include a coil plate provided at an end of the cell element. The coil plate is coupled to an edge of at least one electrode of the cell element. The outer member of the current collector may be coupled to the coil plate and the inner member of the current collector may be coupled to the vent, such that when the vent moves from an undeployed position to a deployed position, the cell element remains substantially fixed within the housing.
Abstract:
The present disclosure includes a battery module that includes a housing having a stack of battery cells. Each battery cell of the stack of battery cells includes a terminal end having at least one cell terminal and a face oriented transverse to the terminal end. The battery module also includes adhesive tape disposed between a first face of a first battery cell of the stack of battery cells and a second face of a second battery cell of the stack of battery cells, and where the adhesive tape fixedly couples the first battery cell to the second battery cell, and where a first terminal end of the first battery cell is substantially aligned with a second terminal end of the second battery cell.
Abstract:
A lithium ion battery module includes a battery cell stack disposed within a housing of the battery module. The stack includes a first battery cell, a second battery cell positioned adjacent to the first battery cell, and a battery cell separator fitted over the first battery cell. The battery cell separator includes a plurality of walls formed from a continuous material and defining a pocket in which the first battery cell is disposed. The plurality of walls is configured to electrically insulate the first cell from the second cell. The separator also includes a projection extending from a wall of the plurality of walls, the projection is positioned between a terminal of the first battery cell and a terminal of the second battery cell and is configured to electrically insulate the terminals from one another.
Abstract:
A battery module includes a battery module housing, a heat exchanger including a plurality of fins disposed in the housing, a first lithium ion battery cell and a second lithium ion battery cell disposed within the battery module housing. The first lithium ion battery cell and the second lithium ion battery cell are separated by a fin of the plurality of fins. The module includes a temperature sensing component coupled to the fin separating the first and second battery cells. Filler material is disposed within the housing and between the battery cells and the fins to mechanically restrain the battery cells within the battery module housing. The filler materials conduct thermal energy between the battery cells and the fin. The filler material covers a free end of the fin and the temperature sensing component. The temperature sensing component is coupled to a conductor extending out of the filler material.
Abstract:
A system includes a battery cell having a packaging and a coil disposed within the packaging. The battery cell further includes a first terminal electrically coupled to a portion the coil and protruding through an opening in the packaging, wherein the first terminal is hermetically sealed at the opening in the packaging using a compressive force.
Abstract:
The present disclosure includes a battery module having a housing with a cell receptacle region defined by walls of the housing and configured to enable passage of electrochemical cells therethrough. The battery module also includes a bus bar carrier sealed in the cell receptacle region. The bus bar carrier includes a perimeter having flexible ribs extending along at least a majority of the perimeter and configured to enable intimate contact between the walls of the housing and the perimeter of the bus bar carrier.
Abstract:
The present disclosure relates to a battery module having a housing and a stack of battery cells disposed in a receptacle area of the housing, where each battery cell has a top having a battery cell terminal and a bottom, where the top of the battery cells face outwardly away from the receptacle area. The battery module includes an integrated sensing and bus bar subassembly positioned against the stack of battery cells and has a carrier, a bus bar integrated onto the carrier, and a biasing member integrated onto the carrier. The bus bar electrically couples battery cells in an electrical arrangement, and the biasing member is between the top of each battery cell and the carrier, where the biasing member has a first material, more compliant than a second material of the carrier, and the biasing member biases the stack of battery cells inwardly toward the housing.