Abstract:
An inverter circuit (500) having a drive transistor (102) that operably couples to a voltage bias input (101) (and where that drive transistor controls the inverter circuit output by opening and closing a connection between the output (105) and ground (104)) is further operably coupled to a feedback switch (401). In a preferred approach the feedback switch is itself also operably coupled to the voltage bias input and the output and preferably serves, when the drive transistor is switched "off", to responsively couple the voltage bias input to the drive transistor in such a way as to cause a gate terminal of the drive transistor to have its polarity relative to a source terminal of the drive transistor reversed and hence permit the inverter circuit to operate across a substantially full potential operating range of the drive transistor.
Abstract:
A semiconductor device made on a polymer substrate (10) using graphic arts printing technology uses a printable organic semiconductor. An electrode (14) is situated on the substrate (10), and a dielectric layer (20) is situated over the electrode (14). Another electrode(s) (25, 26) is situated on the dielectric layer (20). The exposed surfaces of the dielectric (20) and the top electrode (25, 26) are treated with a reactive silane to alter the surface of the electrode (25, 26) and the dielectric (20) sufficiently to allow an overlying organic semiconductor layer to have good adhesion to both the electrode (25, 26) and the dielectric (20). In various embodiments, the electrodes (14, 25, 26) may be printed, and the dielectric layer (20) may also be printed.
Abstract:
An energizable design image portion (203) of a provided design pattern is printed on a provided substrate (201) using a functional ink comprised of at least one energy emissive material. A passive design image portion (202) of that design pattern is then also printed on that substrate using at least one graphic arts ink. In a preferred embodiment this apparatus may further comprise electrically conductive electrodes (204) on the substrate to permit selective energization of the energy emissive material to thereby induce illumination of the energizable design image portion of the design pattern.
Abstract:
An energizable design image portion of a provided design pattern (101) is printed (103) on a provided substrate (101) using a functional ink comprised of at least one energy emissive material. A passive design image portion of that design pattern is then also printed (104) on that substrate using at least one graphic arts ink. In a preferred embodiment this process (100) further provides for printing (105) electrically conductive electrodes on the substrate to permit selective energization of the energy emissive material to thereby induce illumination of the energizable design image portion of the design pattern.
Abstract:
A method and apparatus for writing to solid-state memory is provided herein. In particular, a controller is provided that monitors operating parameters of each die within the system. In order to enable fast, real-time write operations, feedback from each die is analyzed and compared with a stored set of operating parameters. Based on this comparison, a particular die is chosen for write operations such that system performance is optimized.
Abstract:
An object (201) (such as a containment mechanism) supports both a functional electrical circuit (203) and an electrical circuit (202) to which the functional electrical circuit is responsive. In a preferred approach the functional electrical circuit has both a low power state of operation and a higher power state of operation. Upon detecting (104) that an area of connectivity of the electrical circuit has been severed (via, for example, corresponding manipulation of the object itself), the functional electrical circuit responsively operates (106) using the higher power state of operation.
Abstract:
A semiconductor device (20, 20A, 20B) can be comprised of a substrate (21) having a plurality of different printable semiconductor inks formed thereon (26, 26A, 26B). In a preferred approach at least some of these printable semiconductor inks comprise organic semiconductor material inks. These semiconductor inks can vary from one another with respect to various properties including but not limited to electrical characteristics and environmental efficacy.
Abstract:
High quality epitaxial layers of monocrystalline materials (126) can be grown overlying monocrystalline substrates (102) such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer (104) comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer (108) of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials. Further, various shaped piezoelectric structures (132) having optical surfaces (134) may be disposed on the overlying monocrystalline layer for optical switching and controlled manipulation of light signals.