Abstract:
A group timing delay device shifts the timing of drop formation waveforms supplied to drop formation devices of one of first and second nozzle groups so that print drops from the nozzle groups are not aligned relative to each other along a nozzle array direction. A charging device includes a common charge electrode associated with liquid jets from the nozzle groups and a source of varying electrical potential between the charge electrode and liquid jets which provides a charging waveform that is independent of a print and non-print drop pattern. The charging device is synchronized with the drop formation devices and the group timing delay device to produce a print drop charge state on print drops of a drop pair, a first non-print drop charge state on non-print drops of the drop pair, and a second non-print drop charge state on third drops.
Abstract:
An apparatus for obtaining an image of a tooth having at least one light source providing incident light having a first spectral range for obtaining a reflectance image (122) from the tooth and a second spectral range for exciting a fluorescence image (120) from the tooth. A polarizing beamsplitter (18) in the path of the incident light from both sources directs light having a first polarization state toward the tooth and directs light from the tooth having a second polarization state along a return path toward a sensor (68), wherein the second polarization state is orthogonal to the first polarization state. A first lens (22) in the return path directs image-bearing light from the tooth toward the sensor (68), and obtains image data from the portion of the light having the second polarization state. A long-pass filter (15) in the return path attenuates light in the second spectral range.
Abstract:
A projection display surface for reducing speckle artifacts from a projector having at least one narrow band light source having an incident visible wavelength band, wherein the incident visible wavelength band has an incident peak wavelength and an incident bandwidth, comprising: a substrate having a reflective layer that reflects incident light over at least the incident visible wavelength band; and a fluorescent agent distributed over the reflective layer, wherein the fluorescent agent absorbs a fraction of the light in the incident visible wavelength band and emits light in an emissive visible wavelength band having an emissive peak wavelength and an emissive bandwidth; wherein return light from the projection display surface produced when incident light in the incident visible wavelength band is incident on the projection display surface contains light in both the incident visible wavelength band and emissive visible wavelength band, thereby reducing speckle artifacts.
Abstract:
A projection display surface for reducing speckle artifacts from a projector having at least one narrow band light source having an incident visible wavelength band, wherein the incident visible wavelength band has an incident peak wavelength and an incident bandwidth, comprising: a substrate having a reflective layer that reflects incident light over at least the incident visible wavelength band; and a fluorescent agent distributed over the reflective layer, wherein the fluorescent agent absorbs a fraction of the light in the incident visible wavelength band and emits light in an emissive visible wavelength band having an emissive peak wavelength and an emissive bandwidth; wherein return light from the projection display surface produced when incident light in the incident visible wavelength band is incident on the projection display surface contains light in both the incident visible wavelength band and emissive visible wavelength band, thereby reducing speckle artifacts.
Abstract:
A digital projection apparatus has a first light modulation subsystem with a first light source producing linear illumination of a first spectral color and a second light source producing linear illumination of a second spectral color. A first light modulator chip (110a) has at least two independently addressable linear arrays of light modulating devices. A first spatial filter (108) blocks reflected light and transmits diffracted light along a first optical path. A second light modulation subsystem has at least a third light source producing linear illumination of a third spectral color. A second light modulator chip has at least one independently addressable linear array of light modulating devices. A second spatial filter blocks reflected light and transmits diffracted light along a second optical path. A color combining element directs modulated light onto a common optical path. Projection optics direct modulated light toward a scanning element (122) for projection toward a display surface (124).
Abstract:
A method for displaying first and second stereoscopic images to first and second viewers provides the first viewer with a first decoding device having a first viewer differentiating element for receiving the first stereoscopic image and further having a first left- and right-eye differentiating elements for separating left- and right-eye images. The second viewer is provided with a second decoding device having a second viewer differentiating element for receiving the second stereoscopic image and further having a second left- and right-eye differentiating element. The first stereoscopic image is displayed to the first viewer by forming a first left-eye image and forming a first right-eye image, each over substantially half of the refresh period. The second stereoscopic image is displayed to the second viewer by forming a second left-eye image and forming a second right-eye image, each over substantially half of the refresh period.
Abstract:
An illumination apparatus forms, onto a linear array light modulator, a line of illumination that extends in a linear direction. The illumination apparatus has a first laser array with laser emitters for forming a first linear beam array and a second laser array with laser emitters for forming a second linear beam array. An array combiner aligns at least the first and second linear beam arrays in the linear direction and directs the first and second linear beam arrays along a propagation path to form a mixed illumination. At least first and second cylindrical lens elements having power in the linear direction relay the mixed illumination from the propagation path toward the linear array light modulator. At least third and fourth cylindrical lens elements having power in the cross-array direction that is orthogonal to the linear direction focus the mixed illumination onto the linear array light modulator.
Abstract:
A digital projection apparatus has a first light modulation subsystem with a first light source producing linear illumination of a first spectral color and a second light source producing linear illumination of a second spectral color. A first light modulator chip (110a) has at least two independently addressable linear arrays of light modulating devices. A first spatial filter (108) blocks reflected light and transmits diffracted light along a first optical path. A second light modulation subsystem has at least a third light source producing linear illumination of a third spectral color. A second light modulator chip has at least one independently addressable linear array of light modulating devices. A second spatial filter blocks reflected light and transmits diffracted light along a second optical path. A color combining element directs modulated light onto a common optical path. Projection optics direct modulated light toward a scanning element (122) for projection toward a display surface (124).
Abstract:
A method and apparatus for delivering a mixture of compressed fluid and marking material and depositing the marking material in a pattern onto a substrate, includes a high pressure source of a mixture of compressed fluid and marking material. A micro-machined manifold includes a plurality of micro-nozzles, a fluid chamber, and an entrance port with portions of a first surface of the micro-machined manifold defining the entrance port with the entrance port being connected in fluid communication with the fluid chamber. Each of the micro-nozzles having an inlet and an outlet with the inlet being connected in fluid communication with the fluid chamber and the outlet being located on the second surface of the micro-machined manifold. Each micro-nozzle is shaped to produce a directed beam of the mixture of compressed fluid and marking material beyond the outlet of the micro-nozzle. A housing is connected in fluid communication with the high pressure source and the entrance port of the micro-machined manifold with the connection being a sealed connection. Optionally, a device operable to capture marking material that does not adhere to the substrate can be included.
Abstract:
An apparatus for imaging a tooth having a light source with a first spectral range and a second spectral range. A polarizing beamsplitter (18) light having a first polarization state toward the tooth and directs light from the tooth having a second polarization state along a return path toward a sensor (68), wherein the first and second polarization states are orthogonal. A first lens (22) in the return path directs image-bearing light from the tooth, through the polarizing beamsplitter (18), toward the sensor (68), and obtains image data from the redirected portion of the light having the second polarization state. A long-pass filter (15) in the return path attenuates light in the second spectral range. Control logic enables the sensor to obtain either the reflectance image or the fluorescence image.