Abstract:
Various embodiments of methods and systems for adaptive thermal management techniques implemented in a portable computing device (PCD) are disclosed. Notably, in many PCDs, temperature thresholds associated with various components in the PCD such as, but not limited to, die junction temperatures, package on package (PoP) memory temperatures and the touch temperature of the external surfaces of the device itself limits the extent to which the performance capabilities of the PCD can be exploited. It is an advantage of the various embodiments of methods and systems for adaptive thermal management that, when a temperature threshold is violated, the performance of the PCD is sacrificed only as much and for as long as necessary to clear the violation before authorizing the thermally aggressive processing component(s) to return to a maximum operating power.
Abstract:
The subject matter disclosed herein relates to adaptive quality of service for a wireless communication device. In an aspect, one or more wireless signals may be received at a wireless communication device, and one or more attributes of an operating environment for the wireless communication device may be determined based at least in part on the wireless signals. Also, at least in part in response to said determination of the one of more attributes of the operating environment, one or more quality of service parameters of the wireless communication device may be adjusted. In another aspect, the one or more quality of service parameters may be related at least in part to one or more of a frequent calls mode of operation, a dual subscription mode of operation, or an emergency alert mode of operation.
Abstract:
Methods and systems for leveraging temperature sensors in a portable computing device ("PCD") are disclosed. The sensors may be placed within the PCD near known thermal energy producing components such as a central processing unit ("CPU") core, graphical processing unit ("GPU") core, power management integrated circuit ("PMIC"), power amplifier, etc. The signals generated by the sensors may be monitored and used to trigger drivers running on the processing units. The drivers are operable to cause the reallocation of processing loads associated with a given component's generation of thermal energy, as measured by the sensors. In some embodiments, the processing load reallocation is mapped according to parameters associated with pre-identified thermal load scenarios. In other embodiments, the reallocation occurs in real time, or near real time, according to thermal management solutions generated by a thermal management algorithm that may consider CPU and/or GPU performance specifications along with monitored sensor data.
Abstract:
A mobile wireless terminal (MWT) includes multiple wireless modems. The multiple modems have their respective transmit outputs combined to produce an aggregate transmit output. The multiple modems can concurrently transmit data in a reverse link direction and receive data in a forward link direction. The MWT is constrained to operate under an aggregate transmit power limit. Each of the multiple modems has an individual transmit limit related to the aggregate transmit power limit. An MWT controller controls the total number of modems that transmit data at any given time, based on an average energy-per-transmitted bit, or alternatively, individual energy-per-transmitted bits of the modems.