Abstract:
Methods, systems, and devices for wireless communications are described. A wireless device that uses a first radio access technology (RAT) may identify a transmission timing scheme for a shared radio frequency spectrum band, the transmission timing scheme comprising a first set of time intervals allocated for transmissions using a first RAT and a second set of time intervals allocated for transmissions using a second RAT. The wireless device may transmit, during a time interval of the first set of time intervals, a channel reservation signal indicating an end time of the time interval and indicating that the wireless device uses the first RAT. The wireless device may transmit, based at least in part on the transmitted channel reservation signal, over the shared radio frequency spectrum band during at least a portion of the time interval before the end time of the time interval.
Abstract:
Techniques are described for wireless communication. A first method includes sensing an indication of first radio access technology (RAT) communications occupying a shared radio frequency spectrum band; and configuring, in response to the sensing, at least one parameter of a second RAT used by a device to contend for access to the band. A second method includes randomly selecting a number from a range of numbers extending between a lower bound and an upper bound; contending for access to a shared radio frequency spectrum band by performing an extended clear channel assessment (ECCA) procedure over a plurality of CCA slots, the plurality of CCA slots including a first number of CCA slots equal to the upper bound; and winning contention for access to the band after determining, while performing the ECCA procedure, that the band is available for a second number of CCA slots equal to the randomly selected number.
Abstract:
Methods, systems, and devices for wireless communications are described. A wireless device that uses a first radio access technology (RAT) may identify a transmission timing scheme for a shared radio frequency spectrum band, the transmission timing scheme comprising a first set of time intervals allocated for transmissions using a first RAT and a second set of time intervals allocated for transmissions using a second RAT. The wireless device may transmit, during a time interval of the first set of time intervals, a channel reservation signal indicating an end time of the time interval and indicating that the wireless device uses the first RAT. The wireless device may transmit, based at least in part on the transmitted channel reservation signal, over the shared radio frequency spectrum band during at least a portion of the time interval before the end time of the time interval.
Abstract:
Methods, systems, and devices are described for efficient use of transmit opportunities (TXOPs) through adjustment of contention window backoff time values to compensate for one or more TXOPs that may exceed a TXOP limit. A contention window value may be increased, for example, to provide other devices in the network with a fair opportunity for network access based at least in part on one or more TXOPs that exceed the TXOP limit. Allowing one or more transmissions to exceed a TXOP limit may provide enhanced efficiency as compared to having multiple transmissions.
Abstract:
In order to provide a generic access rule, the present disclosure proposes a new potential set of adaptivity rules for LBE based on LBT. The generic access rule of the present disclosure provides LTE-U and Wi-Fi coexistence and DL/UL coexistence in both LTE-U and Wi-Fi. The apparatus receives, from the first master device, a resource allocation for communicating with the second master device. The apparatus also determines a type of CCA procedure to perform before communicating with the second master device on an unlicensed channel. The apparatus further performs a CCA procedure to obtain a transmission opportunity based on the determining, the CCA procedure being one of an ICCA procedure or an ECCA procedure. In addition, the apparatus transmit data to the second master device in accordance with the resource allocation on the unlicensed channel when the transmission opportunity is obtained.