Abstract:
To determine a cell for usage in wireless communication, a signal-to-noise ratio or a signal-to-power ratio can be used in selecting an appropriate cell. However, cell selection can also configure to take both signal-to-noise ratio and signal-to-power ratio into account. Multiple available cells can be analyzed and a highest ranking cell can be selected through balancing the aforementioned ratios. In addition, to minimize transferring between cells, a limitation can be placed such that a cell is not left unless there is better of both the aforementioned ratios at another cell.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a first user equipment (UE) may establish a PC5 unicast link with a second UE. The UE may transmit, to a second UE in a PC5 radio resource control (RRC) message, capability information that includes an indication that the first UE is an unmanned aerial vehicle (UAV). Numerous other aspects are described.
Abstract:
Certain aspects of the present disclosure provide techniques for slice-aware network selection. Particular aspects provide for a method for wireless communication performed by a user equipment (UE). The method generally includes obtaining, for one or more networks, network slicing information indicating one or more slice identifiers supported in the one or more networks, deriving a list of one or more preferred networks based, at least in part, on the network slicing information, and selecting a network to register with from the list of one or more preferred networks.
Abstract:
The present disclosure presents a method and apparatus for handling primary scrambling codes (PSC) in a wireless network. For example, the disclosure presents a method for detecting, by a user equipment (UE) of a plurality of UEs, a PSC in search windows with different timing offsets, wherein the different timing offsets correspond to a plurality of small cells sharing the PSC in a coverage area of a macro cell, and transmitting, by the UE, a plurality of measurement reports corresponding to the different timing offsets. As such, primary scrambling codes (PSC) are handled in a wireless network.
Abstract:
Methods and apparatus for power management in a wireless communication network include identifying a user equipment (UE) configuration as a stationary extra-long battery device configuration. Further, the methods and apparatus include receiving a measurement threshold adjustment message. Moreover, the methods and apparatus include adjusting an idle mode cell measurement threshold based on the measurement threshold adjustment message.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with improving QoE in RAN congestion. In one example, a communications device is equipped to indicate a quality control indicator (QCI) for each of a plurality of applications that communicate with a RAN over a bearer, receive information regarding modification of the bearer or additional bearers based on the QCIs, and modify the bearer or additional bearers according to the information to achieve a desired QoE for at least one of the plurality of applications. In another example, a RAN is equipped to receive a QCI for each of a plurality of applications related to a bearer from a UE, and modify the bearer or adding additional bearers for communicating with the UE based on the QCI for each of the plurality of applications to improve QoE at the UE.
Abstract:
A method of wireless communication defers measurement control reading of a SIB. The method includes determining whether a user equipment (UE) has been redirected to a first radio access technology (RAT) from a second RAT. The method also includes selectively reading a system information block (SIB) based on whether the UE was redirected to the first RAT from a second RAT.
Abstract:
The present disclosure presents apparatuses and methods of accessing a communication network including obtaining extended access barring (EAB) data at a user equipment (UE), wherein the EAB data comprises an EAB uniform delay parameter, computing a uniform distribution parameter, determining an access bar period, wherein the access bar period is based on at least the EAB uniform delay parameter and the uniform distribution parameter, and initiating an access procedure to access the communication network after waiting at least the access bar period. Additionally, apparatuses and methods associated with a network apparatus controlling access to the communication network are also disclosed.
Abstract:
An apparatus and method for controlling idle mode radio measurements comprising: determining if a radio measurement is less than a radio threshold; determining a time duration in which the radio measurement is less than the radio threshold; determining if the time duration is greater than a time measurement threshold; and obtaining at least one other radio measurement from at least one base station which is not a serving cell.
Abstract:
A method and apparatus facilitating efficient handover by a wireless communications device is provided. The method may comprise obtaining at least two handover metrics for a target cell and for a serving cell, wherein the at least two handover metrics are determined by a request received from the serving cell, determining if all the obtained handover metrics for the target cell are greater than or equal to corresponding threshold values, wherein the corresponding threshold values for the at least two handover metrics are determined by the request received from the serving cell, determining if at least one of the obtained handover metrics for the serving cell is less than the corresponding threshold value, and generating a measurement report indicating the target cell as a handover candidate cell.