Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, an unmanned aircraft system service supplier (USS) may receive a first notification indicating that a user equipment (UE) is moving out of an area associated with the USS. The USS may determine a target USS based at least in part on the first notification. The USS may transmit, to an unmanned aircraft system network function (UAS-NF), a second notification. The second notification may indicate that the UE is reallocated to the target USS. Numerous other aspects are described.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a first user equipment (UE) may establish a PC5 unicast link with a second UE. The UE may transmit, to a second UE in a PC5 radio resource control (RRC) message, capability information that includes an indication that the first UE is an unmanned aerial vehicle (UAV). Numerous other aspects are described.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a network, a procedure rejection message for non-cellular access at a non-access stratum (NAS) layer, and provide a first congestion indication from the NAS layer to lower layers for non-cellular access based at least in part on the receiving the procedure rejection message. The UE may refrain, at the lower layers, from initiating establishment of a signaling connection based at least in part on the first congestion indication. Numerous other aspects are provided.
Abstract:
Some aspects described herein relate to provisioning aerial vehicles with identifiers, certificates, or other credentials for communicating based on a mobile network. The UAV can transmit a request to register with the mobile network, where the request includes at least a hardware identifier of the UAV. The UAV may receive, from a component of the mobile network, a response to the request, where the response includes a unique UAV identifier, a UAV certificate, and a network certificate generated by at least one of the component of the mobile network or a unmanned aircraft system service supplier (USS).
Abstract:
Wireless communications systems and methods related to on-demand ultra-reliable, low-latency communication (URLLC) are provided. In one embodiment, a base station (BS) receives, from a user equipment (UE) in a first cell frequency, a request for a protocol data unit (PDU) session over a network slice. The BS receives, from a core network entity, a resource configuration request for the PDU session over the network slice. The BS transmits, to the core network entity, a resource configuration response indicating a cause for rejecting the resource configuration request. In one embodiment, a UE transmits, in a first cell frequency of a network, a network registration request message requesting a network slice of the network that is not provided by the first cell frequency. The UE receives network registration response message indicating the network slice is allowed based on a second cell frequency of the network providing network slice requested.
Abstract:
Methods, systems, and devices for wireless communication are described. A method may include determining to modify current-allowed network slices used by a user equipment (UE) based on a network-trigger; identifying new-allowed network slices for the UE based on the determining; selecting a target access and mobility management function (AMF) based on the new-allowed network slices, the target AMF is accessible by the source AMF; and triggering an AMF relocation based on the selecting.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus relating to local area data network connectivity. In certain aspects, a method for use by a network device includes determining a set of available local area data networks (LADNs) for a user equipment (UE) based on a subscription of the UE to a set of data network names (DNNs) corresponding to the set of available LADNs and sending the UE information indicative of the set of available LADNs and a location of availability corresponding to each of the LADNs of the set of available LADNs.
Abstract:
Techniques are described herein to communicate policy information and policy information requests between user equipments (UEs) and a core network using control plane signaling. In some examples, non-access stratum (NAS) messages may be used to communicate policy information requests from a UE to the core network. Similarly, NAS messages may be used to communicate up-to-date policy information from the core network to the UE. In some examples, the core network may include number of functions to manage the communication of policy information with the UE. In some examples where the UE is roaming away from its home network, the core network may engage in additional signaling to pass policy information to the UE.
Abstract:
Connectionless data transfer is disclosed. Authentication of a device and network node may be performed when data is sent from the device to an application server of an application service provider via a selected network. The transfer of data may take place in an absence of an existing device context between the network node interacting with the device and the core network through which the data travels. State management overhead and signaling overhead may be reduced by use of the exemplary aspects disclosed herein. For example, the device does not need to perform an authentication and key agreement (AKA) procedure to transfer the data and an existing (or pre-existing) device context need not be maintained at the core network.
Abstract:
A method, operational at a device, includes receiving at least one packet belonging to a first set of packets of a packet flow marked with an identification value, determining that the at least one packet is marked with the identification value, determining to change a quality of service (QoS) treatment of packets belonging to the first set of packets marked with the identification value that are yet to be received, and sending a request to change the QoS treatment of packets belonging to the first set of packets marked with the identification value that are yet to be received to trigger a different QoS treatment of packets within the packet flow, responsive to determining to change the QoS treatment. Other aspects, embodiments, and features are also claimed and described.