Abstract:
A method of forming a wafer level packaged circuit device includes forming a device wafer, the device wafer including a first group of one or more material layers left remaining in a first region of a substrate of the device wafer; and forming a cap wafer configured to be attached to the device wafer, the cap wafer including a second group of one or more material layers left remaining in a second region of a substrate of the cap wafer; wherein a combined thickness of the first and second groups of one or more material layers defines an integrated bond gap control structure upon bonding of the device wafer and the cap wafer.
Abstract:
A wafer level vacuum packaged (WLVP) device having a first substrate having an array of detectors and a second substrate bonded to the first substrate having a plurality of protrusions and a plurality of getter material members projecting outwardly from a sidewall of the protrusions members are disposed at oblique angles to the sidewalls and have ends extending into gaps between the protrusions. The device is formed by: forming protrusions into a surface of a substrate; and depositing getter material by physical vapor deposition from an evaporating source of the getter material at an oblique angle to the sidewalls, atoms of the getter material initially forming nucleation sites on the sidewalls with subsequent atoms attaching to the nucleation sites and shadowing area surrounding each nucleation site, the getter material thereby growing into structures towards the evaporating source.
Abstract:
A digital pixel includes a capacitive transimpedance amplifier (CTIA) coupled to a photodiode that receives an electrical charge and output an integration voltage. An integration capacitor coupled to the CTIA accumulates the integration voltage over an integration period. A comparator compares the accumulated integration voltage with a threshold voltage and generates a control signal at a first level each time the accumulated integration voltage is greater than the threshold voltage. A charge subtraction circuit receives the control signal at the first level and discharges the accumulated integration voltage each time the control signal at the first level is received from the comparator. An analog or digital counter receives the control signal at the first level and adjusts a counter value each time the control signal is received from the comparator. An output interface communicates the counter value to an image processing circuit at an end of the integration period.
Abstract:
A sealed package having a device disposed on a wafer structure and a lid structure boned to the device wafer. The device wafer includes: a substrate; a metal ring disposed on a surface portion of substrate around the device and a bonding material disposed on the metal ring. The metal ring extends laterally beyond at least one of an inner and outer edge of the bonding material. A first layer of the metal ring includes a stress relief buffer layer having a higher ductility than that of the surface portion of the substrate and a width greater than the width of the bonding material. The metal ring extends laterally beyond at least one of the inner and outer edges of the bonding material. The stress relief buffer layer has a coefficient of thermal expansion greater than the coefficient of expansion of the surface portion of the substrate and less than the coefficient of expansion of the bonding material.
Abstract:
A scene projector including an array of light emitting pixels, a tunable filter element, and a spatial light modulator. The tunable filter element is optically coupled to the array of light emitting pixels such that light emitted from the array of light emitting pixels is passed through the tunable filter element as filtered light. The spatial light modulator is optically coupled to the array of light emitting pixels and is configured to generate transmitted light by interacting with the filtered light to control at least one of an amplitude, a phase, and a polarization of the filtered light.
Abstract:
An electronic device and methods of manufacture thereof. One or more methods may include providing a lid wafer having a cavity and a surface surrounding the cavity and a device wafer having a detector device and a reference device. In certain examples, a solder barrier layer of titanium material may be deposited onto the surface of the lid wafer. The solder barrier layer of titanium material may further be activated to function as a getter. In various examples, the lid wafer and the device wafer may be bonded together using solder, and the solder barrier layer of titanium material may prevent the solder from contacting the surface of the lid wafer.
Abstract:
An electronic device and methods of manufacture thereof. One or more methods may include providing a lid wafer having a cavity and a surface surrounding the cavity and a device wafer having a detector device and a reference device. In certain examples, a solder barrier layer of titanium material may be deposited onto the surface of the lid wafer. The solder barrier layer of titanium material may further be activated to function as a getter. In various examples, the lid wafer and the device wafer may be bonded together using solder, and the solder barrier layer of titanium material may prevent the solder from contacting the surface of the lid wafer.
Abstract:
Methods for reducing wafer bow induced by an anti-reflective coating of a cap wafer are provided. The method may utilize a shadow mask having at least one opening therein that is positioned opposite recessed regions in a cap wafer. The method may further include depositing at least one layer of an anti-reflective coating material through the shadow mask onto a planar side of a cap wafer to provide a discontinuous coating on the planar side.
Abstract:
A sealed package having a device disposed on a wafer structure and a lid structure boned to the device wafer. The device wafer includes: a substrate; a metal ring disposed on a surface portion of substrate around the device and a bonding material disposed on the metal ring. The metal ring extends laterally beyond at least one of an inner and outer edge of the bonding material. A first layer of the metal ring includes a stress relief buffer layer having a higher ductility than that of the surface portion of the substrate and a width greater than the width of the bonding material. The metal ring extends laterally beyond at least one of the inner and outer edges of the bonding material. The stress relief buffer layer has a coefficient of thermal expansion greater than the coefficient of expansion of the surface portion of the substrate and less than the coefficient of expansion of the bonding material.
Abstract:
A sealed package having a device disposed on a wafer structure and a lid structure boned to the device wafer. The device wafer includes: a substrate; a metal ring disposed on a surface portion of substrate around the device and a bonding material disposed on the metal ring. The metal ring extends laterally beyond at least one of an inner and outer edge of the bonding material. A first layer of the metal ring includes a stress relief buffer layer having a higher ductility than that of the surface portion of the substrate and a width greater than the width of the bonding material. The metal ring extends laterally beyond at least one of the inner and outer edges of the bonding material. The stress relief buffer layer has a coefficient of thermal expansion greater than the coefficient of expansion of the surface portion of the substrate and less than the coefficient of expansion of the bonding material.