Abstract:
A method of manufacturing a thermoelectric material comprising: ball-milling a compound comprising a plurality of components, the first component M comprising at least one of a rare earth metal, an actinide, an alkaline-earth metal, and an alkali metal, the second component T comprising a metal of subgroup VIII, and the third component X comprises a pnictogen atom. The compound may be ball-milled for up to 5 hours, and then thermo-mechanically processed by, for example, hot pressing the compound for less than two hours. Subsequent to the thermo-mechanical processing, the compound comprises a single filled skutterudite phase with a dimensionless figure of merit (ZT) above 1.0 and the compound has a composition following a formula of MT4X12.
Abstract:
Systems and methods disclosed herein are directed towards the fabrication of a nanomesh composite filter (NCF) that can be manufactured according to various embodiments, all of which are intended to be fabricated in order to control the transmission, reflection, and absorption of various wavelengths bands. In particular, the disclosed embodiments may be used for heat shielding applications where certain wavelength ranges may be desirable to transmit and others may be desirable to reflect.
Abstract:
A thermoelectric half-Heusler material comprising niobium (Nb), iron (Fe) and antimony (Sb) wherein the material comprises grains having a mean grain size less than one micron. A method of making a nanocomposite half-Heusler thermoelectric material includes melting constituent elements of the thermoelectric material to form an alloy of the thermoelectric material, comminuting (e.g., ball milling) the alloy of the thermoelectric material into nanometer scale mean size particles, and consolidating the nanometer size particles to form the half-Heusler thermoelectric material comprising at least niobium (Nb), iron (Fe) and antimony (Sb) and having grains with a mean grain size less than one micron.
Abstract:
Discussed herein are half-Heusler thermoelectric materials including niobium, iron, antimony, and titanium that are formed by ball-milling and hot-pressing the ball-milled power to obtain various thermoelectric properties and an average grain size above 1 μm.
Abstract:
Disclosed is a thermoelectric material according to various SSnSe-based formulas, and the systems and methods of manufacturing the thermoelectric, high performance material by hot pressing materials according to various formulas in order to obtain a figure of merit (ZT) suitable for thermoelectric applications at high (above 600K) temperatures. A disclosed method comprises hot-pressing a powder that comprises Sn and Se in a predetermined direction to form a pressed component, wherein the pressed component comprises a ZT value of at least 0.8 above about 750 K.
Abstract:
Systems and methods of manufacturing thermoelectric devices comprising at least one electrical contact fabricated using hot-pressing to increase the bonding strength at the contact interface(s) and reducing the contact resistance. The hot pressed component may include a first and a second metallic layer each in contact with a thermoelectric layer, and where a contact resistance between the first metallic layer and the thermoelectric layer or between the second metallic layer and the thermoelectric layer is less than about 10 μΩ cm2. When interlayers are employed in a thermoelectric device, first hot pressed contact interface is formed between the thermoelectric layer and the first interlayer and a second hot pressed contact interface is formed between the thermoelectric layer and the second interlayer, and at least one of the first and the second hot pressed contact interfaces comprises a bonding strength of at least 16 MPa.
Abstract:
A thermoelectric composition comprising tin (Sn), tellurium (Te) and at least one dopant that comprises a peak dimensionless figure of merit (ZT) of 1.1 and a Seebeck coefficient of at least 50 μV/K and a method of manufacturing the thermoelectric composition. A plurality of components are disposed in a ball-milling vessel, wherein the plurality of components comprise tin (Sn), tellurium (Te), and at least one dopant such as indium (In). The components are subsequently mechanically and thermally processed, for example, by hot-pressing. In response to the mechanical-thermally processing, a thermoelectric composition is formed, wherein the thermoelectric composition comprises a dimensionless figure of merit (ZT) of the thermoelectric composition is at least 0.8, and wherein a Seebeck coefficient of the thermoelectric composition is at least 50 μV/K at any temperature.
Abstract:
Systems and methods of manufacturing a thermoelectric, high performance material by using ball-milling and hot pressing materials according to various formulas, where some formulas substitute a different element for part of one of the elements in the formula, in order to obtain a figure of merit (ZT) suitable for thermoelectric applications.
Abstract:
Materials and systems and methods of manufacture thereof that function as thermoelectric materials both in and near a cryogenic temperature range. In particular, the synthesis of heavy fermion materials that exhibit higher ZTs than previously achieved at cryogenic and near-cryogenic temperatures.
Abstract:
A detoxification device for removing pathogens from air within an environment. The detoxification device may include a filtration media for catching and retaining particles larger than about 0.3 micrometers (μm) with an efficiency of at least 99%. The detoxification device may also include a heating element having a metallic foam. The heating element may be heated upon application of an electrical current to the heating element. The heating element may, upon being heated, heat the filtration media to a target temperature that is effective to kill a pathogen.