Abstract:
Systems and methods of fabricating electrodes, including thin metallic films, include depositing a first metallic layer on a substrate and passivating the deposited layer. The processes of deposition and passivation may be done sequentially. In some embodiments, a plurality of substrates may be coated with a metallic layer and further processed at a later time, including passivation and disposal of additional layers as discussed herein.
Abstract:
Systems and methods disclosed herein are directed towards the fabrication of a nanomesh composite filter (NCF) that can be manufactured according to various embodiments, all of which are intended to be fabricated in order to control the transmission, reflection, and absorption of various wavelengths bands. In particular, the disclosed embodiments may be used for heat shielding applications where certain wavelength ranges may be desirable to transmit and others may be desirable to reflect.
Abstract:
Systems and methods disclosed herein are directed towards the fabrication of a nanomesh composite filter (NCF) that can be manufactured according to various embodiments, all of which are intended to be fabricated in order to control the transmission, reflection, and absorption of various wavelengths bands. In particular, the disclosed embodiments may be used for heat shielding applications where certain wavelength ranges may be desirable to transmit and others may be desirable to reflect.
Abstract:
A transparent flexible nanomesh having at least one conductive element and sheet resistance less than 300Ω/□ when stretched to a strain of 200% in at least one direction. The nanomesh is formed by depositing a sacrificial film, depositing, etching, and oxidizing a first metal layer on the film, etching the sacrificial film, depositing a second metal layer, and removing the first metal layer to form a nanomesh on the substrate.
Abstract:
A transparent flexible nanomesh having at least one conductive element and sheet resistance less than 300Ω/□ when stretched to a strain of 200% in at least one direction. The nanomesh is formed by depositing a sacrificial film, depositing, etching, and oxidizing a first metal layer on the film, etching the sacrificial film, depositing a second metal layer, and removing the first metal layer to form a nanomesh on the substrate.
Abstract:
Systems and methods of fabricating electrodes, including thin metallic films, include depositing a first metallic layer on a substrate and passivating the deposited layer. The processes of deposition and passivation may be done sequentially. In some embodiments, a plurality of substrates may be coated with a metallic layer and further processed at a later time, including passivation and disposal of additional layers as discussed herein.
Abstract:
Systems and methods disclosed herein are directed towards the fabrication of a nanomesh composite filter (NCF) that can be manufactured according to various embodiments, all of which are intended to be fabricated in order to control the transmission, reflection, and absorption of various wavelengths bands. In particular, the disclosed embodiments may be used for heat shielding applications where certain wavelength ranges may be desirable to transmit and others may be desirable to reflect.