Abstract:
A rotary wing vehicle includes a body structure having an elongated tubular backbone or core, and a counter-rotating coaxial rotor system having rotors with each rotor having a separate motor to drive the rotors about a common rotor axis of rotation. The rotor system is used to move the rotary wing vehicle in directional flight.
Abstract:
A rotary wing vehicle includes a body structure having an elongated tubular backbone or core, and a counter-rotating coaxial rotor system having rotors with each rotor having a separate motor to drive the rotors about a common rotor axis of rotation. The rotor system is used to move the rotary wing vehicle in directional flight.
Abstract:
A portable unmanned air vehicle and launcher system that includes a foldable unmanned air vehicle having a pressure tube; a launch gas reservoir for holding launch gas; a launch tube operatively connected to the launch gas reservoir and having a free end that is positioned in the pressure tube of the air vehicle; a free piston positioned within the launch tube; and a free piston stop to prevent the free piston from leaving the launch tube. A first portion of the launch gas in the launch gas reservoir is released into the launch tube and forces the free piston from an initial position to an end position at which the free piston is stopped by the free piston stop.
Abstract:
A modular unmanned aerial vehicle (UAV) having a fuselage, a nose cone, a left wing piece, a right wing piece, and a tail section. The tail section and nose cone each join to the fuselage through mating bulkhead structures that provide quick connection capability while being readily separated so as to enable the UAV to break apart at these connection points and thereby absorb or dissipate impact upon landing. The UAV is capable of rapid assembly in the field for two-man launch and data retrieval, as well as quick disassembly into these five component parts for transport and storage in a highly compact transport case that can be carried as a backpack.
Abstract:
A drive assembly for use with a mechanical flying or walking device comprises an articulated member (7) having first and second portions (7a, 7b) arranged such that the portions move relative to each other, and a drive mechanism (9) for imparting motion to the articulated member. The drive mechanism (9) comprises: a drive member for imparting a cyclic motion on the articulated member, and a control member for controlling, in a predetermined manner, the relative position of the first and second portions during each cycle of the cyclic motion of the articulated member. In the case of a mechanical flying device, two such drive assemblies may be provided, the articulated member of each assembly forming a wing.
Abstract:
A portable unmanned air vehicle and launcher system is provided that includes a foldable unmanned air vehicle having a pressure tube; a launch gas reservoir for holding launch gas; a launch tube operatively connected to the launch gas reservoir and having a free end that is positioned in the pressure tube of the air vehicle; a free piston positioned within the launch tube; and a free piston stop to prevent the free piston from leaving the launch tube. A first portion of the launch gas in the launch gas reservoir is released into the launch tube and forces the free piston from an initial position to an end position at which the free piston is stopped by the free piston stop.
Abstract:
An aerial vehicle, preferably including: a rotary wing and a protection housing enclosing the rotary wing. An aerial vehicle, preferably including: a first rotary wing module including a first rotary wing and a second rotary wing module including a second rotary wing, wherein the first rotary wing module and the second rotary wing module are preferably operable between a folded configuration and an unfolded configuration. A method of aerial vehicle operation.
Abstract:
Vehicles such as unmanned air vehicles that are capable of movement from an open, flight configuration to an enclosed configuration in which all major flight components can be protected by an outer shell are disclosed. In the enclosed configuration, the vehicles can take on standard geometric shapes such as a rectangular prism, sphere, cylinder, or another shape, so as to not be recognizable as an unmanned air vehicle. Embodiments of vehicles can also include interchangeable and/or wireless motor arms, motor arms which are electrically connected to the remainder of the vehicle only when in an open configuration, remote controllers removably attached to the remainder of the vehicle, and clip or other attachment mechanisms for attachment to objects such as backpacks.
Abstract:
A rotary wing vehicle includes a body structure having an elongated tubular backbone or core, and a counter-rotating coaxial rotor system having rotors with each rotor having a separate motor to drive the rotors about a common rotor axis of rotation. The rotor system is used to move the rotary wing vehicle in directional flight.
Abstract:
A technique is directed to launching an unmanned aerial vehicle (UAV). The technique involves attaching a UAV launcher to a hand-held weapon, and installing a UAV onto the UAV launcher while the UAV launcher is attached to the hand-held weapon. The technique further involves activating the hand-held weapon to launch the UAV into flight from the UAV launcher. Since a user already may be carrying the hand-held weapon for firing ammunition, the user simply needs to further carry the UAV launcher and the UAV which, in some situations, can be packaged into an easy-to-carry container such as a backpack, a carrying case, and so on.