Abstract:
An elevator system is shown that includes an elevator shaft (12) in building (10) and a plurality of elevator cars (C.sub.1, C.sub.2 and C.sub.3) that are movable up and down within the shaft along vertical axis (20). The elevator cars are independently movable by drive motors (D.sub.1, D.sub.2 and D.sub.3) attached to the cars through hoisting cables (24, 28 and 34). The motors are controlled by motor controllers (MC.sub.1, MC.sub.2 and MC.sub.3) which, in turn are controlled by a computer (62) having as inputs service and destination requests, load weight and car location. Different operating modes are shown (FIGS. 5-8) including one in which serviced floors (F.sub.1 through F.sub.16) are serviced by no more than one elevator car at a time, and the cars travel sequentially from one end floor to the other end floor (FIGS. 5 and 6). Simultaneous servicing of a plurality of different floors is shown (FIGS. 7 and 8) and travel of empty elevator cars to a designated floor without responding to floor calls also is shown (FIGS. 6 and 8). Counterweights (CW.sub.1, CW.sub.2 and CW.sub.3) are attached by cables to the respective elevator cars (C.sub.1, C.sub.2 and C.sub.3), which counterweights travel along a vertical axis (38) laterally displaced from the elevator car axis (20). Shock absorbers (54) are provided for absorbing impact of accidental collision between adjacent counterweights (FIG. 3 ) which shock absorbers include coil springs (58) and dashpots (60).
Abstract:
Apparatus for generating dispatching signals for a group of elevators operating between two terminals. The dispatching signals are generated at intervals computed in accordance with an estimated number of passengers the next car to be dispatched from each terminal will carry. This estimate is based on the actual number of passengers carried by previously dispatched cars. By functioning in this manner the apparatus distributes the passengers between the cars.
Abstract:
In a vertically movable elevator group management control apparatus for control of a plurality of transversely shiftable cars among plural shafts, control is done by storing route data with respect to each said car, generating target floor data including a target floor, based on car call data obtained in correspondence with each said car and station call data as obtained correspondingly to each floor, estimating the time taken for said car to reach said target floor, based on at least said route data, said target floor data and said car call data, and assigning a certain car to a certain floor call, based on the estimated arrival time.
Abstract:
In a vertically movable elevator group management control apparatus for control of a plurality of transversely shiftable cars among plural shafts, control is done by storing route data with respect to each said car, generating target floor data including a target floor, based on car call data obtained in correspondence with each said car and station call data as obtained correspondingly to each floor, estimating the time taken for said car to reach said target floor, based on at least said route data, said target floor data and said car call data, and assigning a certain car to a certain floor call, based on the estimated arrival time.
Abstract:
An elevator system (20) includes multiple cars (22, 24) within a hoistway (40). Parking positions (72, 74) are provided outside the range of passenger service levels (70). A destination entry strategy is used by a controller (60) for directing movement of the elevator cars (22, 24). The inventive combination of multiple cars in a hoistway, parking positions outside of the normal passenger service level range and destination entry car movement control allows for reducing car travel speed, reducing car size or both while still meeting desired handling capacity needs or even exceeding the desired handling capacity associated with another elevator system that requires larger cars, higher speeds and more building space.
Abstract:
PROBLEM TO BE SOLVED: To provide an elevator system and a method which does not have an effect that makes a passenger feel discomfort. SOLUTION: This elevator includes one or a few elevator cars 16 moving in a first vertical direction elevator hoistway 10 and a second vertical direction elevator hoistway 12, and has an access port 14 to these elevator hoistways 10, 12. A parking hoistway 11 in a vertical direction with a cross point 15 between the two elevator hoistways 10, 12 is provided. Thereby, the elevator car 16 can transfer between the two adjacent hoistways 10, 11, 12. The elevator includes a control system 40 and a driving means. Thereby the vacant elevator car 16 can be moved through the crossing point 15, and if necessary the vacant elevator car 16 can be arranged in the first elevator hoistway 10 and the second elevator hoistway 12. COPYRIGHT: (C)2004,JPO