Abstract:
A method and apparatus for controlling the spectral components of a light beam are described. The apparatus comprises means (3-7) for generating a collimated light beam; means (9) for dispersing the collimated beam; a mask (1) including an aperture (2) the size of which is such that a portion of the dispersed beam passes through the aperture in use; and movement means (not shown) for causing relative transverse movement between the light beam and the aperture. A memory (not shown) is provided for storing in use a profile of the relative transverse movement between the light beam and the aperture (2) required to obtain a desired spectral response in the transmitted light beam, the movement means being responsive to the stored profile to cause relative transverse movement in accordance with the predetermined profile.
Abstract:
The disclosure relates to an optical filter to be used for signal selection, removal of noise light, wavelength equalization of signal light, etc. in an optical communication, optical measurement or the like, and an optical amplifier employing such optical filter. Signal light is dispersed in different angles according to each wavelength by a diffraction grating and the dispersed light is selectively transmitted or reflected by a transmission type spatial filter or reflection type spatial filter, and is then coupled with an output fiber bundle as non-dispersed light by the diffraction grating. Thus, an optical filter capable of varying wavelength pass band characteristics and an optical amplifier uniform in wavelength amplification factor can be provided.
Abstract:
Un monochromateur à accès sélectif est décrit. Ce dispositif ne contient pas d'éléments mécaniques et élimine la nécessité de balayer séquentiellement les longueurs d'ondes de la lumière contenue dans un spectre lumineux pour sélectionner une ou des longueur(s) d'ondes voulues dans le spectre. Le dispositif comprend des moyens de commutation de grande vitesse (16), permet de sélectionner simultanément des longueurs d'ondes et des largeurs de bande multiples, et possède la capacité de corriger la non-linéarité dans des prismes, causée par la dispersion non-linéaire ou de second ordre de la lumière.
Abstract:
An imaging system includes a light source configured to illuminate a target and a camera configured to image light responsively emitted from the target and reflected from a spatial light modulator (SLM). The imaging system is configured to generate high-resolution, hyperspectral images of the target. The SLM includes a refractive layer that is chromatically dispersive and that has a refractive index that is controllable. The refractive index of the refractive layer can be controlled to vary according to a gradient such that light reflected from the SLM is chromatically dispersed and spectrographic information about the target can be captured using the camera. Such a system could be operated confocally, e.g., by incorporating a micromirror device configured to control a spatial pattern of illumination of the target and to modulate the transmission of light from the target to the camera via the SLM according to a corresponding spatial pattern.
Abstract:
An apparatus and method for catalyzing a reaction on a substrate (24) comprising, a light source (12), a micromirror (16) positioned to redirect light (14) from the light source (12) toward a substrate (24) wherein the redirected light (14) catalyzes a chemical reaction proximate a substrate (24), is disclosed. A computer (18) is connected to; and controls, the positioning of mirrors within the micromirror (16) to specifically redirect light to specific portions of a substrate. The substrate (24) can be placed in a reaction chamber (50), wherein the light (14) that is redirected by the micromirror (16) catalyzes a chemical reaction proximate a substrate (24).
Abstract:
The present invention provides an optical analysis system for determining an amplitude of a principal component of an optical signal. The principle component is indicative of the concentration of a particular compound of various compounds of a substance that is subject to spectroscopic analysis. The optical signal is subject to a wavelength selective weighting. Spectral weighting is preferably performed by means of spatial light manipulation means in combination with a dispersive optical element. The inventive calibration mechanism and method effectively allows for an accurate positioning of the spatial light manipulation means. Calibration is based on a calibration segment on the spatial light manipulation means in combination with a reference light source and a detector.
Abstract:
An apparatus for generating artificial light that closely simulates the intensity and spectrum of natural light and other dynamic light conditions. The apparatus includes a collection of light sources of various colors which are controlled by a computer. Attached to the computer is a sensor that measures the spectral qualities of the light produced by the light sources. The sensor sends this information to the computer which then adjusts the light sources to generate the desired light conditions.
Abstract:
The invention relates to a procedure for determining an identification of a sample of material, or its properties. Electromagnetic radiation from a radiation source (1) is reflected or transmitted through the sample. The radiation from the sample is collected and analyzed over several channels (7, 7', 7"), which modulate the radiation with a spectral transmission function which is unique for each channel. The modulated radiation is transmitted to one or several detectors (9, 9', 9") which produce output signals which are further electronically processed. The spectral range of each of the individual channels is common to all of the channels. Within the common range the channels are provided with different spectral transmission functions (7, 7',7") which are optimally chosen for a given application.