Abstract:
An imaging device and method are provided. Light from an object is provided as a plurality of sets of light beams to a phase difference array having a plurality of elements. The phase difference array is configured to provide different optical paths for light included within at least some of a plurality of sets of light beams. The light from the phase difference array is received at an imaging element array. The imaging element array includes a plurality of imaging elements. Information obtained from hyperspectral imaging data based on output signals of the imaging element array can be displayed.
Abstract:
An apparatus and system for use in determining location of a celestial body are presented. The apparatus comprises: a polarizer comprising an array of polarized light filter cells and a light sensor array. The array of polarized light filter cells comprises at least a first polarization direction and a second polarization direction different from said first polarization direction. And the polarizer thereby produces polarized light of at least first and second different polarizations. The light sensor array is configured to receive the polarized light from the polarizer and produce data indicative of a pattern of at least one of light polarization intensity and direction. The pattern is indicative of at least one of azimuth and elevation of the celestial body to be located.
Abstract:
The invention discloses a device and a method for measuring phase retardation distribution and fast axis azimuth angle distribution of a birefringence sample in real time. The device comprises a collimating light source, a circular polarizer, a diffractive beam-splitting component, a quarter-wave plate, an analyzer array, a charge coupled device (CCD) image sensor and a computer with an image acquisition card. The method can measure the phase retardation distribution and the fast axis azimuth angle distribution of the birefringence sample in real time and has large measurement range. The measurement result is immune to the light-intensity fluctuation of the light source.
Abstract:
An imaging device and method are provided. Light from an object is provided as a plurality of sets of light beams to a phase difference array having a plurality of elements. The phase difference array is configured to provide different optical paths for light included within at least some of a plurality of sets of light beams. The light from the phase difference array is received at an imaging element array. The imaging element array includes a plurality of imaging elements. Information obtained from hyperspectral imaging data based on output signals of the imaging element array can be displayed.
Abstract:
Prism-coupling systems and methods for characterizing large depth-of-layer waveguides are disclosed. The systems and methods utilize a coupling prism having a coupling angle α having a maximum coupling angle αmax at which total internal reflection occurs. The prism angle α is in the range 0.81αmax≦̸α≦̸0.99αmax. This configuration causes the more spaced-apart lower-order mode lines to move closer together and the more tightly spaced higher-order mode lines to separate. The adjusted mode-line spacing allows for proper sampling at the detector of the otherwise tightly spaced mode lines. The mode-line spacings of the detected mode spectra are then corrected via post-processing. The corrected mode spectra are then processed to obtain at least one characteristic of the waveguide.
Abstract:
An apparatus for detecting a polarization altering substance, such as ice, on a surface includes a polarizing filter on the surface between the surface and the polarization altering substance. When the polarizing filter includes alternating regions having orthogonal polarizing properties, only one viewing of the surface through a blocking filter is required. When light, either polarized or unpolarized, reflects off the surface, it passes through the polarizing filter and becomes polarized. Reflected light that additionally passes through ice after leaving the polarizer becomes unpolarized. When viewed through a blocking polarizer filter, polarized light passing through ice appears bright due to the unpolarizing effect of ice. On the other hand, polarized light not passing through ice retains its polarization and appears dark when viewed through a blocking filter. Since the polarizing filter is between the surface and the viewer, the surface can be metallic, dielectric, or painted without affecting the results. If the proper blocking orientation for the viewer is not known in advance, the Stokes coefficients can be calculated if views are taken through a series of specified polarizing filters. The ratio of polarized light returned to the viewer compared to the unpolarized light returned to the viewer can then be calculated from any arbitrary position. A retroreflective substance on the surface further enhances the effect for systems employing an active illumination source located coaxially with or adjacent to the imaging system.