Abstract:
PURPOSE: A thermometer is provided to correct a radiant rate in match with a control temperature by using reflection information when detecting the temperature with respect to oxidation of a steel plate. CONSTITUTION: A thermometer capable of correcting a radiant rate includes a high-luminance LED(light emitting device). The modulates light emitting intensity with enormous wavelength. Modulated light generated from the high-luminance LED is vertically radiated into a surface of a steel plate by converting modulated light into parallel light through a lens and a semi-spherical mirror. The radiant rate and correction thereof are carried out by using reflection information of normal reflecting light and scattered reflection light, which are reflected from the surface of the steel plate.
Abstract:
A wearable safety apparatus includes a housing, a plurality of directional thermal imaging sensors mounted on the housing and facing outwardly away from the housing in a corresponding plurality of different directions towards thermal zones of a heat source. Each sensor detects infrared radiation (IR) intensity and generates an output indicative of a temperature of the detected IR intensity in a respective thermal zone faced by a respective sensor. An interface is mounted on the housing and has a display positioned to be viewable by a user, e.g., a firefighter. A controller processes the outputs generated by the sensors, and displays at a plurality of spaced-apart positions on the display a plurality of positional thermal indicators when the temperature in the respective thermal zone is elevated. The position of each positional thermal indicator corresponds to the thermal zone faced by the respective sensor.
Abstract:
A wearable safety apparatus includes a housing, a plurality of directional thermal imaging sensors mounted on the housing and facing outwardly away from the housing in a corresponding plurality of different directions towards thermal zones of a heat source. Each sensor detects infrared radiation (IR) intensity and generates an output indicative of a temperature of the detected IR intensity in a respective thermal zone faced by a respective sensor. An interface is mounted on the housing and has a display positioned to be viewable by a user, e.g., a firefighter. A controller processes the outputs generated by the sensors, and displays at a plurality of spaced-apart positions on the display a plurality of positional thermal indicators when the temperature in the respective thermal zone is elevated. The position of each positional thermal indicator corresponds to the thermal zone faced by the respective sensor.
Abstract:
An array of individual infrared detectors is comprised of optimally small individual detectors, whose reduced size is enabled by immersion optics which reduce the wavelength of the radiation incident on the detectors, and by the use of individual field lenses- Fresnel lenses, for each detector.
Abstract:
A monitor for measuring the temperature distribution of a product (12) including a plurality of ball lenses (14) lying in a lenticular array (18) across the product (12). A signal processor (22) is connected to a photodiode array (20). Each photodiode in the array (20) is connected by a separate optical fiber (16) to one of the ball lenses (14).
Abstract:
A radiation detecting array 10 has a frequency domain architecture wherein incident radiation is imaged in parallel by an array of radiation detectors 12-16. Each radiation detector has an associated amplitude to frequency conversion device 18-22 for providing output signals wherein the output of each photodetector is represented as a frequency within a uniquely identified band of frequencies, the specific frequency being a function of the output signal amplitude of the photodetector. The readout of one or more selected detectors is accomplished by providing a swept frequency band or bands associated with the desired detector or detectors and mixing the detector frequencies with the swept band. The frequency representing the photodetector output may be input directly to a low dispersion transmission line 30. The unit cells may include radiation detectors comprised of superconducting material and also superconducting components that inherently manifest current or voltage to frequency conversion characteristics in accordance with the Josepson effect. An array having high temperature superconducting components includes photodetectors 60, associated voltage to frequency convertors 64 and a transmission line 70 integrated upon a common substrate.
Abstract:
Three means or methods for compensating for thermal noise, also referred to as dark signal, are utilized to enhance the accuracy of a monolithic diode array. A charge-coupled linear photodiode array is used in a camera to detect densities of any image projected or reflected onto the array. After conversion, voltage variations of one/one thousandth (1/1,000) volt in a ten volt range are significant to the measurement of densities. Therefore, extremely accurate control of thermal noise, which is generated in the cell sites and in the shift registers used to obtain the data from the cell sites, is extremely important. The three methods or means of control are as follows. Temperature control maintains the temperature of the photodiode array at approximately ten degrees centigrade to minimize the generation of thermal noise. A thermistor is used to detect any temperature variations within the range controlled by the cooling means and the reading is compensated for those variations in temperature. Finally, thermal noise generated in masked cells are measured and used as a correction or calibration for the readings. The foregoing means and methods enhance the accuracy of the readings by an order of magnitude.
Abstract:
The invention concerns an optical detection matrix (9) contained within a cryogenic chamber (3). Electrical image signals produced by the matrix (9) are converted into optical signals and transmitted out of the chamber (3) on lines 42A-42T. The optical signals on lines 42A-42T are converted into electrical signals carried on line 56.
Abstract:
Bias current to an array of detectors is switched off during periods when the detectors are fruitlessly receiving energy from inside the image housing to either side of an optical aperture thereof. This reduces the generation of heat in the detectors.
Abstract:
A two-dimensional infrared focal plane employing a uniquely configured detector array for reducing the thermal conductance between detectors and between each detector and its environment to enhance signal-to-noise and spacial resolution without requiring cumbersome cooling. An array of radiation concentrators placed between the detector array and the image and spaced from the array, permits widely spaced detectors without incurring any substantial dead space on the detector plane. Detector support configurations provide for connection to nodes of a readout IC substrate while positioning each detector over an air-filled or evacuated chamber to further reduce thermal conductivity.