Abstract:
A device (1) for inspecting objects with a substantially spherical surface, such as for example eggs or fruit, comprises optical observation means (8) for observing the objects. The device has a supporting surface (10) for supporting the objects. There is a light source for illuminating the objects. The device also comprises a box (2) with reflective walls (3a, 4b and 4a shown) which is positioned above the supporting surface (11). The light source and the observation means (8) are accomadated in the box (2). A plurality of objects can be placed next to one another on the supporting surface (10) and can be illuminated equally well.
Abstract:
An integral system for automated and non-intrusive of cleaning and non-destructive inspection (ultrasonic volumetric testing and visual testing) to detect, characterize and monitor with precision the level of internal and external damage (Cracks, deformations, corrosion, erosion, etc.) that may be present in coke drums throughout their life cycle is disclosed. Embodiments are disclosed that enable a condition of a coke drum to be estimated in a reliable manner for their fitness for service from the results obtained from the automated inspection with the non-destructive methods of ultrasound and visual testing.
Abstract:
Arrangements and methods are provided for obtaining information associated with an anatomical sample. For example, at least one first electro-magnetic radiation can be provided to the anatomical sample so as to generate at least one acoustic wave in the anatomical sample. At least one second electro-magnetic radiation can be produced based on the acoustic wave. At least one portion of at least one second electro-magnetic radiation can be provided so as to determine information associated with at least one portion of the anatomical sample. In addition, the information based on data associated with the second electro-magnetic radiation can be analyzed. The first electro-magnetic radiation may include at least one first magnitude and at least one first frequency. The second electro-magnetic radiation can include at least one second magnitude and at least one second frequency. The data may relate to a first difference between the first and second magnitudes and/or a second difference between the first and second frequencies. The second difference may be approximately between −100 GHz and 100 GHz, excluding zero.
Abstract:
To facilitate setting of a parameter at the time of generating an inspection image from an image acquired by using a photometric stereo principle. A photometric processing part generates an inspection image based on a plurality of luminance images acquired by a camera. A display control part and a display part switch and display the luminance image and the inspection image, or simultaneously display these images. An inspection tool setting part adjusts a control parameter of the camera and a control parameter of an illumination apparatus. Further, when the control parameter is adjusted, the display control part updates the image being displayed on the display part to an image where the control parameter after the change has been reflected.
Abstract:
An image inspection apparatus includes: an imaging section for capturing an image of a workpiece from a certain direction; an illumination section for illuminating the workpiece from different directions at least three times; an illumination controlling section for sequentially turning on the illumination sections one by one; an imaging generating section for driving the imaging section to generate a plurality of images; a normal vector calculating section for calculating a normal vector with respect to the surface of the workpiece at each of pixels by use of a pixel value of each of pixels having a corresponding relation among the plurality of images; and a contour image generating section for performing differential processing in an X-direction and a Y-direction on the calculated normal vector at each of the pixels, to generate a contour image that shows a contour of inclination of the surface of the workpiece.
Abstract:
An inspection apparatus includes: an imaging section for capturing a first reference image by simultaneously turning on three or more illumination sections, and a second reference image at imaging timing temporally after the first reference image; a tracking target image designating section for designating a tracking target image in the first reference image and is used for tracking a position of the workpiece; a corresponding position estimating section for searching a position of the tracking target image designated by the tracking target image designating section from the second reference image, and specifying a position including the tracking target image in the second reference image, to estimate a corresponding relation of pixels that correspond among each of the partial illumination images; and an inspection image generating section for generating an inspection image for photometric stereo based on the corresponding relation of each of the pixels of the partial illumination images.
Abstract:
Methods and systems are provided, which pattern an illumination of a metrology target with respect to spectral ranges and/or polarizations, illuminate a metrology target by the patterned illumination, and measure radiation scattered from the target by directing, at a pupil plane, selected pupil plane pixels from a to respective single detector(s) by applying a collection pattern to the pupil plane pixels. Single detector measurements (compressive sensing) has increased light sensitivity which is utilized to pattern the illumination and further enhance the information content of detected scattered radiation with respect to predefined metrology parameters.
Abstract:
To facilitate setting of a parameter at the time of generating an inspection image from an image acquired by using a photometric stereo principle. A photometric processing part generates an inspection image based on a plurality of luminance images acquired by a camera. A display control part and a display part switch and display the luminance image and the inspection image, or simultaneously display these images. An inspection tool setting part adjusts a control parameter of the camera and a control parameter of an illumination apparatus. Further, when the control parameter is adjusted, the display control part updates the image being displayed on the display part to an image where the control parameter after the change has been reflected.
Abstract:
A clogged filter detector has a transmitter and a sensor which are held in place by a transmitter bracket and a sensor bracket, respectively. The transmitter emits a beam of electromagnetic radiation, and the sensor is positioned in the path of this beam at a point such that the beam travels through a filter between the transmitter and the sensor. The transmitter and sensor are mis-aligned with the air flow at the point where the beam contacts the filter. The transmitter alternates between a transmitting mode and a dormant mode, and the transmitter emits a plurality of electromagnetic pulses during each transmitting mode.
Abstract:
A system for monitoring performance of a machine for detection of visible signs of failure, the system including: a machine enclosure housing a plurality of machine parts; a visual conduit for providing a view of an interior of the machine; an interface to the machine configured to receive images from the visual conduit; and a repair network for linking the interface to a monitoring center that provides for the repair of problems with the machine.