Abstract:
The invention provides a method and apparatus for detecting minority gaseous species in a mixture by light-emission spectroscopy by means of an optical spectrometer (8), in which the radiation emitted by a plasma (4) present in the gas mixture for analysis is used and, in the spectrum of said radiation, lines are identified of a majority gaseous species that present amplitudes that are sensitive to the presence of a minority species, and information about the concentration of a minority gaseous species is deduced from the amplitude(s) of said sensitive line(s). This makes it possible to monitor minority gaseous species in real time.
Abstract:
A gas sensor, whose chamber uses filters and choppers in either a semicircular geometry or annular geometry, and incorporates separate infrared radiation filters and optical choppers. This configuration facilitates the use of a single infrared radiation source and a single detector for infrared measurements at two wavelengths, such that measurement errors may be compensated.
Abstract:
Methods, devices, and systems are provided for analyzing the moisture content in natural gas. In one embodiment, a portable moisture analyzer system is provided and can include a moisture analyzer and a housing. The moisture analyzer can include a tunable diode laser absorption spectrometer (TDLAS) and a natural gas sample conditioning system. The TDLAS can be configured to detect water vapor content within a natural gas sample. The sample conditioning system can be in fluid communication with the TDLAS and can be configured to condition at least one of temperature, flow rate, and pressure of a natural gas sample. The housing can be configured to receive the moisture analyzer therein and to protect the moisture analyzer from vibration and/or shock.
Abstract:
An arrangement for measuring gas concentrations in a gas absorption method, wherein the arrangement includes a plurality of light sources, a measuring cell, at least one measuring receiver and an evaluation apparatus. The measuring cell has a narrow, longitudinally-extended beam path with an entrance-side opening diameter B and an absorption length L with L>B, wherein the measuring cell has a gas inlet and a gas outlet wherein a plurality of light sources of different wavelength spectra is grouped into a first light source group wherein an optical homogeniser is interposed between the first light source group and the measuring cell, wherein, in particular, the homogeniser is coupled to the light source group directly or via a common optical assembly.
Abstract:
Validation verification data quantifying an intensity of light reaching a detector of a spectrometer from a light source of the spectrometer after the light passes through a validation gas across a known path length can be collected or received. The validation gas can include an amount of an analyte compound and an undisturbed background composition that is representative of a sample gas background composition of a sample gas to be analyzed using a spectrometer. The sample gas background composition can include one or more background components. The validation verification data can be compared with stored calibration data for the spectrometer to calculate a concentration adjustment factor, and sample measurement data collected with the spectrometer can be modified using this adjustment factor to compensate for collisional broadening of a spectral peak of the analyte compound by the background components. Related methods, articles of manufacture, systems, and the like are described.
Abstract:
Validation verification data quantifying an intensity of light reaching a detector of a spectrometer from a light source of the spectrometer after the light passes through a validation gas across a known path length can be collected or received. The validation gas can include an amount of an analyte compound and an undisturbed background composition that is representative of a sample gas background composition of a sample gas to be analyzed using a spectrometer. The sample gas background composition can include one or more background components. The validation verification data can be compared with stored calibration data for the spectrometer to calculate a concentration adjustment factor, and sample measurement data collected with the spectrometer can be modified using this adjustment factor to compensate for collisional broadening of a spectral peak of the analyte compound by the background components. Related methods, articles of manufacture, systems, and the like are described.
Abstract:
A system and method to obtain correct gas density and flux measurements using (i) gas analyzer (open-path, or closed-path gas analyzers with short intake tube, or any combination of the two); (ii) fast temperature or sensible heat flux measurement device (such as, fine-wire thermocouple, sonic anemometer, or any other device providing fast accurate gas temperature measurements); (iii) fast air water content or latent heat flux measurement device (such as, hygrometer, NDIR analyzer, any other device providing fast accurate gas water content measurements); (iv) vertical wind or sampling device (such as sonic anemometer, scintillometer, or fast solenoid valve, etc.) and (v) algorithms in accordance with the present invention to compute the corrected gas flux, compensated for T-P effects. In case when water factor in T-P effects is negligible, the fast air water content or latent heat flux measurement device (item iii in last paragraph) can be excluded.
Abstract:
Non-dispersive infrared (NDIR) sensing systems employ a NDIR sensor coupled to a microprocessor to determine gas concentrations by employing slope-based methodologies that compensate for pressure variations, temperature variations, or both, which may compare NDIR signals with calibrated data. NDIR sensor systems may employ means for limiting the system peak current demand providing for the portability and scalability of the system. In NDIR sensor systems calculating gas concentrations using calibration data, the phase of the change in the NDIR output signal in response to a change in the infrared source emitter level may be measured as part of the calibration process.
Abstract:
A defect inspecting apparatus of the invention solves a problem that in a defect inspecting apparatus, because of improving detection sensitivity of a microscopic defect by reducing a detection pixel size, a focal depth becomes shallow, a height of imaging is varied due to environmental change and the detection sensitivity of a defect becomes unstable. This apparatus comprises an XY stage, which carries a substrate to be inspected and scans in a predetermined direction, and a mechanism having a system of irradiating a defect on the inspected substrate at a slant and detecting the defect by a detection optical system disposed on the upper side, which corrects a height of imaging in real time for change in temperature and barometric pressure in order to keep the imaging in a best condition.
Abstract:
A defect inspecting apparatus of the invention solves a problem that in a defect inspecting apparatus, because of improving detection sensitivity of a microscopic defect by reducing a detection pixel size, a focal depth becomes shallow, a height of imaging is varied due to environmental change and the detection sensitivity of a defect becomes unstable. This apparatus comprises an XY stage, which carries a substrate to be inspected and scans in a predetermined direction, and a mechanism having a system of irradiating a defect on the inspected substrate at a slant and detecting the defect by a detection optical system disposed on the upper side, which corrects a height of imaging in real time for change in temperature and barometric pressure in order to keep the imaging in a best condition.