Abstract:
The present invention relates to an alkali metal generating agent and others for formation of a photo-cathode or a secondary-electron emitting surface capable of stably generating an alkali metal. The alkali metal generating agent is used in formation of a photo-cathode for emitting a photoelectron corresponding to incident light, or in formation of a secondary-electron emitting surface for emitting secondary electrons corresponding to an incident electron. Particularly, the alkali metal generating agent contains at least an oxidizer comprising at least one molybdate with an alkali metal ion as a counter cation, and a reducer for reducing the ion. An alkali metal generating device comprises at least the alkali metal generating agent and a case housing it, and the case is provided with a discharge port for discharging the vapor of the alkali metal.
Abstract:
The cathode for photo-electron emission 5 is comprised of an alkali metal containing layer 5d made of material for emitting photo-electrons by the entry of light or for emitting secondary electrons by the entry of electrons, such as particles which consist of an alkali antimony compound, on an Ni electrode substrate 5c on which an Al layer 5b is deposited, and has an intermediate layer 5a made of carbon nano-tubes between the alkali metal containing layer 5d and the Ni electrode substrate 5c, therefore the defect density inside the particles is decreased, and the recombining probability of electrons and holes drops remarkably, which improves the quantum efficiency.
Abstract:
A photomultiplier includes a photocathode and an electron multiplier. A typical structure of the electron multiplier is obtained such that a dynode unit constituted by stacking a plurality of dynode plates in the incident direction of photoelectrons, an anode plate, and an inverting dynode plate are stacked. The anode plate (5) has electron through holes at a predetermined portion to cause secondary electrons emitted from the dynode unit (13) to pass therethrough. Each electron through hole has a diameter on the inverting dynode plate side larger than that on the dynode unit side, thereby increasing the capture area of the secondary electrons orbit-inverted by the inverting dynode plate.
Abstract:
L'invention concerne un procédé de fabrication d'un intensificateur d'images radiologiques. Avant de l'introduire dans l'intensificateur, on recouvre la grille (G₃) qui est la plus proche de l'anode (A) d'une couche d'un matériau, conducteur de l'électricité, et ayant la propriété d'oxyder les métaux alcalins. On supprime ainsi l'éclairage parasite de l'écran dobservation (4) dû aux métaux alcalins déposés involontairement sur cette grille (G₃) lors de l'élaboration de la photocathode (3).
Abstract:
@ Es wird ein Kanal-Sekundärelektronenvervielfacher mit einem mechanisch widerstandsfähigen Trägerkörper (12) aus Metall oder Keramik beschrieben, der einen Vervielfacherkanal bildet, dessen Wand mit einer sekundäremissionsfähigen Schicht (22) beschichtet ist, die durch Reduktion der Oberfläche einer Glasurschicht erzeugt wurde. Der thermische Ausdehnungskoeffizient des Materials des Trägerkörpers ist mindestens 10% größer als der der Glasurschicht, um das Auftreten von Rissen, die das elektrische Arbeiten des Vervielfachers beeinträchtigen, zu verhindern bzw. den Einfluß etwaiger Risse weitgehend auszuschalten. Der Kanalvervielfacher hat vorzugsweise einen sich trichterförmig erweitenden Anfangsabschnitt. Die sekundäremissionsfähige Schicht (22) im trichterförmigen Anfangsabschnitt des Vervielfacherkanales ist durch eine spiralenförmige Rille in einen spiralenförmigen Streifen unterteilt, um eine Feldverteilung zu erzeugen, die ein effektiveres Sammeln der Elektronen im Anfangsabschnitt bewirkt.
Abstract:
Channel plate image intensifiers, for use as raster intensifiers in cathode ray tubes for example, comprise a stack of alternately arranged perforate laminar dynodes M and perforate laminar separators D aligned to form electron multiplier channels P. Each of the separators comprise a perforate aluminium plate having an anodized layer some 15 microns thick on the plate surface. Such separators can be manufactured to have the desired electrical characteristics and uniform thickness over their entire area so that the dynodes M are parallel to each other and provide a uniform gain over their entire area. The invention also relates to a method of anodizing perforate and imperforate aluminium foils.
Abstract:
A cathode (5) for emitting photoelectrons or secondary electrons comprises a nickel electrode substrate (5c) with an aluminum layer (5b) deposited on it; an intermediate layer (5a) consisting of carbon nanotubes formed on the aluminum layer; and an alkaline metal layer (5d) formed on the intermediate layer (5a) and composed, for example, of particles of an alkali antimony compound that either emits photoelectrons in response to incident light or emits secondary electrons in response to incident electrons. The decrease in defect density of the particles reduces the probability of recombination of electron and hole remarkably, thus increasing quantum efficiency.
Abstract:
An alkali metal generating agent (1) for use in forming a photoelectric surface emitting a photoelectron corresponding to an incident light or a secondary electron emission surface emitting a secondary electron corresponding to an incident electron, which comprises an oxidizing agent comprising at least one molybdate having an alkali metal ion as a counter cation and a reducing agent for reducing the above cation. The above metal generating agent (1), which includes a molybdate having weaker oxidizing power than that of a chromate, undergoes slower oxidation-reduction reaction, which results in easier reaction rate control as compared to a conventional technique using a chromate, leading to the generation of an alkali metal with good stability.