Abstract:
A method and apparatus for eliminating voids and improving crystal quality in shaped ceramic product, e.g. sapphire fiber or silicon sheet, from a melt by using a sloped die tip. The sloped die tip or array thereof comprises an outer sidewall which is sloped outwardly at an angle of 5° to 40° from the vertical.
Abstract:
A crystal growth crucible made of boron nitride includes a cylindrical tip portion for accommodating a seed crystal, and a cylindrical straight-body portion for growing a crystal, which is formed above the tip portion and has a diameter larger than that of the tip portion. Thickness T1 of the tip portion and thickness T2 of the straight-body portion satisfy a condition of 0.1 mm≦T2
Abstract:
Previously a number of techniques have been used in order to form single crystal or pre-determined crystallography components and articles. Each one of these techniques has its own particular problems, including susceptibility to error. By utilisation of a bi-crystal experiment to determine melt-back length LM and by consideration of the ingress distance d from potential initiation nucleation points on a perimeter of a seed crystal, it is possible to determine a maximum ingress length d. By ensuring that the maximum ingress length d is less than or equal to a seed crystal diameter R, it is possible to project locus from potential nucleation points C1, C2 in terms of potential radii for stray grain propagation. As the seed crystal will have a known crystalline orientation, it will be possible to consider two divergent growth curves of the crystal in terms of the stray grains propagating from the point C1, C2. In such circumstances, a connector channel can be provided with a radius r=R/4 in an area between the periphery of the seed and the locus of the stray grain maximum ingress distances d. In situations where it is found d exceeds the crystal radius R, it will be understood that the actual crystal diameter R used may be increased or adjustment made with regard to the melt-back length LM in order to alter the maximum ingress distance d.
Abstract:
A method for the directional solidification of silicon or other materials. A cooled plate is lowered into a silicon melt and an ingot of solid silicon is solidified downwards
Abstract:
A method of preparing a thermoelectric material includes the following steps. A thermoelectric raw material can be filled into a cavity of a first mold so that the thermoelectric raw material filled in the cavity has first and second dimensions. The first dimension can be defined in a first direction. The second dimension can be defined in a second direction. The second direction can be perpendicular to the first direction. The first dimension can be equal to or greater than the second dimension. The thermoelectric raw material filled in the cavity can be cooled in a uniaxial direction that is parallel to the second direction at a cooling rate of at least 600° C./min.
Abstract:
An improved mechanical arrangement controls the introduction of silicon particles into an EFG (Edge-defined Film-fed Growth) crucible/die unit for melt replenishment during a crystal growth run. A feeder unit injects silicon particles upwardly through a center hub of the crucible/die unit and the mechanical arrangement intercepts the injected particles and directs them so that they drop into the melt in a selected region of the crucible and at velocity which reduces splashing, whereby to reduce the likelihood of interruption of the growth process due to formation of a solid mass of silicon on the center hub and adjoining components. The invention also comprises use of a Faraday ring to alter the ratio of the electrical currents flowing through primary and secondary induction heating coils that heat the crucible die unit and the mechanical arrangement.
Abstract:
Growth of monocrystalline rods from a bulk melt is carried out by a modified Czochralski process using a float which floats on the bulk melt held in a crucible. Melt flows through a passageway in the float to a crystal growth zone at a rate which prevents diffusion of dopant from the growth zone to the bulk melt. The shape of the crystal may be determined by a shaper wall in the float which defines the growth zone, in which case the crystal body is pulled from the float as it grows without rotating the crystal. The temperature of the float near the shaper wall may be monitored and controlled to control the crystallization process.
Abstract:
A belt-roller crystal pulling mechanism is described. The belt-roller comprises a single driven belt having a vertical run, and a set of pivotally mounted follower rollers for urging the growing crystal in contact with the belt. The pivot mount enables bends or buckles in the crystal to go through the belt and rollers without causing wiggle at the growth interface which might otherwise cause the growing crystal to break free from the meniscus.
Abstract:
An apparatus for making a single crystal which includes a sealed vessel, a crucible received in the sealed vessel to hold a molten liquid and a floating member having an opening for defining the cross sectional outline of a single crystal while being grown and floating on the molten liquid. The floating member is made from a sintered body consisting essentially of at least one of the oxides of yttrium and the lanthanum series elements, aluminum oxide, aluminum nitride and silicon nitride each in a prescribed amount.
Abstract:
The invention is an improved apparatus for producing monocrystalline bodies of alumina (or other materials) that are characterized by varying cross-sections, for example, a sapphire tube having an internal flange. The apparatus comprises a novel die arrangement adapted to support a thin film of melt from which the crystalline body is grown, the die being adjustable to change the configuration of the film and thereby vary the shape of the body being grown.