Abstract:
An electron-emitting device employs a multi-layer resistor (46). A lower layer (48) of the resistor overlies an emitter electrode (42). A set of electron-emissive elements (54) overlie an upper layer (50) of the resistor. Each resistive layer extends continuously from a location below each electron-emissive element to a location below each other electron-emissive element. The two resistive layers are of different chemical composition. The upper resistive layer is typically formed with cermet. The lower resistive layer is typically formed with a silicon-carbon compound.
Abstract:
For use in cathodoluminescent field emission display devices, a cathode emitter can comprise an inverted field effect transistor having a diamond film or other low effective work function material deposited onto the channel layer of the transistor, such that the diamond film provides a source of primary electron emissions. A variable voltage source is applied to the gate of the transistor creating an electric field that controls the conductivity of the channel layer, thereby activating or deactivating electron emissions from this cathode emitter structure. In addition, electron blocking junctions can be incorporated into the emitter structure to inhibit current flow through the device during a deactivated state. In a variation, the transistor of the cathode emitter has the diamond film being deposited onto an electrically conductive pad that is electrically connected to, and extending outwardly from, the transistor. Alternatively, a sideways laterally gated transistor structure can be used with the emitter surface being applied to the transistor's drain. A near mono-molecular oxide film of high secondary electron emission material can also be included on the emitter surface for enhanced electron emissions.
Abstract:
A video display with integrated control circuitry formed on a single dielectric substrate, includes a dielectric substrate; emitter cathodes formed on the dielectric substrate for emitting electrons; a window plate mounted a fixed distance from the substrate to define a vacuum chamber therebetween; phosphors mounted to the window plate which generate light when irradiated with the electrons; and field effect transistors mounted to the substrate which are electrically interconnected to the emitter cathodes for selectively controlling light emissions from the phosphors.
Abstract:
Electron field emission devices (cold cathodes), vacuum microelectronic devices and field emission displays which incorporate cold cathodes and methods of making and using same. More specifically, cold cathode devices comprising electron emitting structures grown directly onto a substrate material. The invention also relates to patterned precursor substrates for use in fabricating field emission devices and methods of making same and also to catalytically growing other electronic structures, such as films, cones, cylinders, pyramids or the like, directly onto substrates.
Abstract:
A field emission display includes a substrate with a plurality of cathode layers provided thereon. A plurality of micro tips are provided on each of the cathode layers. A plurality of gate insulating layers are also provided on the cathode layers, each of the gate insulating layers having a plurality of holes for accommodating each unit of the micro tips. A plurality of gate electrodes are provided on the gate insulating layers, each of the gate electrodes having a plurality of holes corresponding to each hole of the plurality of gate insulating layers, each of the plurality of gate insulating layers and each of the plurality of gate electrodes being alternately provided on each other.
Abstract:
A field-emission structure suitable for large-area flat-panel televisions centers around an insulating porous layer that overlies a lower conductive region situated over insulating material of a supporting substrate. Electron-emissive filaments occupy pores extending through the porous layer. A conductive gate layer through which openings extend at locations centered on the filaments typically overlies the porous layer. Cavities are usually provided in the porous layer along its upper surface at locations likewise centered on the filaments.
Abstract:
A field emission device of simple structure enables stabilization and control of field emission current. Emission current is controlled by a plurality of control voltage systems. An emitter having a sharp tip is fabricated by processing a p-type semiconductor substrate, and an n-type source region is provided on the p-type semiconductor substrate surface at a position that is laterally separated from the emitter. An electrode layer having an aperture facing the apex portion of the emitter is provided on an insulating layer, the electrode layer extending to above the n-type source region. Voltage applied to the electrode layer to apply an extractor field to the apex portion of the emitter and to induce inversion layers at the emitter surface and the surface of the p-type semiconductor substrate. The electrode layer is divided into a plurality of electrodes. An extraction voltage is applied to one of these electrodes closest to the emitter, another electrode is connected to an X selection line and another to a Y selection line, thereby controlling emission current.
Abstract:
A process for manufacturing a field emission element including a substrate, and an emitter and a gate each arranged on the substrate is provided. The emitter is formed at at least a tip portion thereof with an electron discharge section, which is formed of metal or semiconductor into a monocrystalline structure or a polycrystalline structure preferentially oriented in at least a direction perpendicular to the substrate by deposition.
Abstract:
A field emission display and a method therefor, which can substantially improve uniformity of electrons emitted from numerous micro-tips formed to be applied to a flat panel display, by etching the edges of cathodes which are shaped into stripes and forming resistance portions in the etched areas, thereby improving an excessive etching and roughness made in etching a hole in an area for forming a micro-tip. Thus, the display is free of the decrease in tip-adhesion, so that the process efficiency can be increased up to 90% and the uniformity difference between the electrons emitted from a plurality of micro-tips can be maintained at .+-.5% in the edge and center of the cathode.
Abstract:
A field emitter device includes a column conductor, an insulator, and a resistor structure for advantageously limiting current in a field emitter array. A wide column conductor is deposited on an insulating substrate. An insulator is laid over the column conductor. A high resistance layer is placed on the insulator and is physically isolated from the column conductor. The high resistance material may be chromium oxide or 10%-50% wt % Cr+SiO. A group of microtip electron emitters is placed over the high resistance layer. A low resistance strap interconnects the column conductor with the high resistance layer to connect in an electrical series circuit the column conductor, the high resistance layer, and the group of electron emitters. One or more layers of insulator and a gate electrode, all with cavities for the electron emitters, are laid over the high resistance material. One layer of insulator is selected from a group of materials including SiC, SiO, and Si.sub.3 N.sub.4. An anode plate is attached with intermediate space between the anode plate and the microtip electron emitters being evacuated.