Abstract:
An autonomous floor cleaning robot includes a transport drive and control system arranged for autonomous movement of the robot over a floor for performing cleaning operations. The robot chassis carries a first cleaning zone comprising cleaning elements arranged to suction loose particulates up from the cleaning surface and a second cleaning zone comprising cleaning elements arraigned to apply a cleaning fluid onto the surface and to thereafter collect the cleaning fluid up from the surface after it has been used to clean the surface. The robot chassis carries a supply of cleaning fluid and a waste container for storing waste materials collected up from the cleaning surface.
Abstract:
An apparatus for returning of robot and a returning method thereof are provided, in which the apparatus for returning of robot includes a signal transmitter which is disposed on a charging station and transmits a single front signal and a plurality of distance signals including first, second and third distance signals, a signal receiver which is disposed on the robot and includes a plurality of receiving sensors to receive any one among the single front signal and one among the plurality of distance signals, and a controller which calculates an angle of the charging station by using one among the received single front signal and the plurality of received distance signals and controls the driving so that the robot can return to the charging station by using the calculated angle of the charging station.
Abstract:
There is provided a self-propelled electronic device that is supplied with power from a charging base installed in a predetermined position and automatically travels to a position away from the charging base, the self-propelled electronic device including: a travelling control unit that makes the self-propelled electronic device move automatically by controlling the rotation of a wheel; a rechargeable battery that supplies power for performing travelling control during the automatic travelling; a charging base searching unit that searches for the position of the charging base; and a control unit; wherein, when the control unit determines that returning to the charging base is required, the control unit performs return processing by which the self-propelled electronic device is made to come to rest and then rotate in a resting state by the travelling control unit and, when the charging base searching unit searches for the direction in which the charging base lies and detects the direction in which the charging base lies, the self-propelled electronic device moves in the direction in which the charging base lies.
Abstract:
A method of controlling a robot cleaner includes recognizing information on a monitoring standby position by a robot cleaner, moving to the monitoring standby position at a monitoring start time by the robot cleaner, acquiring an image, by an image acquisition unit of the robot cleaner, at the monitoring standby position, determining whether an event has occurred, by the robot cleaner, based on the image acquired by the image acquisition unit, transmitting the image acquired by the image acquisition unit to an external remote terminal when it is determined that the event occurred.
Abstract:
An intelligent robot system comprising an intelligent robot (100) and a charging base (200). The intelligent robot (100) comprises a docking electrode (102), a walking mechanism (106) and a control unit (105). The docking electrode (102), the walking mechanism (106) and the control unit (105) are disposed in the body (101) of the intelligent robot (100). The charging base (200) comprises a charging electrode (201) disposed on the body (101) of the charging base (200). The intelligent robot (100) further comprises a gripping mechanism (107). When the docking electrode (102) and the charging electrode (201) dock successfully, the control unit (105) controls the e gripping mechanism (107) to lock the walking mechanism (106) to enable the intelligent robot (100) to maintain a successful docking state in the charging base (200), preventing the charging electrode (201) of the charging base (200) from being separated from the docking electrode (102) due to the improper movement of the walking mechanism (106). Any interference during of the intelligent robot (100) is thus prevented and charging efficiency is improved.
Abstract:
A movement operation system for autonomous moving cleaning apparatus comprises a charging dock and an autonomous moving cleaning apparatus. The charging dock includes a charging module and an infrared ray emitter. The autonomous moving cleaning apparatus includes a battery, at least one servomotor, an infrared ray receiver and a microcontroller unit. The infrared ray receiver receives an encrypted infrared signal emitted by the infrared ray emitter and sends the encrypted infrared signal to the microcontroller unit for decoding. The microcontroller unit detects whether the present voltage of the battery is higher than a charge voltage of the charging module, and generates a control signal to control the servomotor to move the autonomous moving cleaning apparatus away from the charging dock or to the charging dock for charging the battery.
Abstract:
A robot cleaner system is described including a docking station to form a docking area within a predetermined angle range of a front side thereof, to form docking guide areas which do not overlap each other on the left and right sides of the docking area, and to transmit a docking guide signal such that the docking guide areas are distinguished as a first docking guide area and a second docking guide area according to an arrival distance of the docking guide signal. The robot cleaner system also includes a robot cleaner to move to the docking area along a boundary between the first docking guide area and the second docking guide area when the docking guide signal is sensed and to move along the docking area so as to perform docking when reaching the docking area.
Abstract:
There is provided a self-propelled electronic device that is supplied with power from a charging base installed in a predetermined position and automatically travels to a position away from the charging base, the self-propelled electronic device including: a travelling control unit that makes the self-propelled electronic device move automatically by controlling the rotation of a wheel; a rechargeable battery that supplies power for performing travelling control during the automatic travelling; a charging base searching unit that searches for the position of the charging base; and a control unit; wherein, when the control unit determines that returning to the charging base is required, the control unit performs return processing by which the self-propelled electronic device is made to come to rest and then rotate in a resting state by the travelling control unit and, when the charging base searching unit searches for the direction in which the charging base lies and detects the direction in which the charging base lies, the self-propelled electronic device moves in the direction in which the charging base lies.
Abstract:
An autonomous floor cleaning robot includes a transport drive and control system arranged for autonomous movement of the robot over a floor for performing cleaning operations. The robot chassis carries a first cleaning zone comprising cleaning elements arranged to suction loose particulates up from the cleaning surface and a second cleaning zone comprising cleaning elements arraigned to apply a cleaning fluid onto the surface and to thereafter collect the cleaning fluid up from the surface after it has been used to clean the surface. The robot chassis carries a supply of cleaning fluid and a waste container for storing waste materials collected up from the cleaning surface.
Abstract:
The invention relates to a multi-functional charger for wireless cleaner. The invention includes a case with a docking station at one side and a charging dock at the other side; a first charging terminal provided in the docking station of the case and for being connected to a connection terminal of the robot cleaner; a second charging terminal provided in the charging dock of the case and for being connected to a connection terminal of the handheld cleaner; and a charging module provided in the case, supplying the first charging terminal and the second charging terminal, respectively with electrical power, and charging the robot cleaner and the handheld cleaner, respectively. The invention can charge the robot cleaner and the handheld cleaner at one location, and get a charging power source through a single wire and charge the robot cleaner and the handheld cleaner simultaneously.