Abstract:
Particles for forming interconnected or continuous layers of material are, in some embodiments, composed of a Material A, a first central material comprising at least one meltable, softenable, or sinterable substance, and Material B, a second substantially thin material applied to the outer surface of said first material which is thermally or mechanically breachable.
Abstract:
A multilayer film including: an A layer composed of a thermoplastic resin; and a B layer disposed on at least one of the surfaces of the A layer, the B layer being composed of a material Y that contains as a main component a polymer having a glass transition temperature of −50 to 40° C., and a thickness Ta of the A layer, a thickness Tb of the B layer, a planar orientation coefficient P of the A layer, a loss modulus Ea″ of the A layer, a loss modulus Eb″ of the B layer, a storage modulus Ea′ of the A layer, and a storage modulus Eb′ of the B layer satisfying following formulae (1) to (4): (1) 2.5×10−3 1.0×10−3 (3) Eb″>Ea″+0.01 GPa (4) Eb′
Abstract:
A product, generally in sheet form, allowing adjustment in positioning on installation and subsequent removal, including a layer comprising crumb-rubber material, and having a first side and a second side. A coating of a low-grab pressure sensitive adhesive is applied directly to at least part of the exposed surface of the crumb-rubber material. The adhesive is determined to be a low-grab adhesive if, after 24 hours adhesive binding dwell-time, a 90° peel adhesion at 300 mm/minute, as measured by FINAT Test Method No. 2, of between 1.77 and 3.96 Newtons/25 mm width at room temperature (23° C.±1° C.) and at a relative humidity of 50%±5%.
Abstract:
An apparatus for coating at least a first plurality of articles each article thereof having at least a first surface to be coated is disclosed. The apparatus includes an emission source for directing emission elements towards the first surfaces of the plurality of articles, at least one support member for supporting the first plurality of articles, wherein support member supports the first plurality of articles such that the first surface is exposed to the path of emission from said emission source, and a drive assembly for moving the support member such that the first plurality of articles is moveable with respect to the path of emission from said emission source
Abstract:
Tubular ceramic structures, e.g., anode components of tubular fuel cells, are manufactured by applying ceramic-forming composition to the external surface of the heat shrinkable polymeric tubular mandrel component of a rotating mandrel-spindle assembly, removing the spindle from the assembly after a predetermined thickness of tubular ceramic structure has been built up on the mandrel and thereafter heat shrinking the mandrel to cause the mandrel to separate from the tubular ceramic structure.
Abstract:
Coated articles and methods and systems for coating the articles are described herein. The methods and systems described herein include, but are not limited to, steps for actively or passively controlling the temperature during the coating process, steps for providing intimate contact between the substrate and the support holding the substrate in order to maximize energy transfer, and/or steps for preparing gradient coatings. Methods for depositing high molecular weight polymeric coatings, end-capped polymer coatings, coatings covalently bonded to the substrate or one another, metallic coatings, and/or multilayer coatings are also disclosed. Deposition of coatings can be accelerated and/or improved by applying an electrical potential and/or through the use of inert gases.
Abstract:
A sliding engine component may include a sliding surface including a plastic polymer-based layer disposed on a metallic substrate. The plastics polymer-based layer may include a plurality of plastic polymer-based layers. The plurality of plastic polymer-based layers may include a first coating of a first polymer-based layer deposited on the metallic substrate and cured at a first temperature, and a second coating of a second polymer-based layer deposited onto the first polymer-based layer and cured at a second temperature. The second temperature may be lower than the first temperature.
Abstract:
The present invention relates to a composite of a porous substrate and one-dimensional nanomaterial, which is manufactured by a hydrothermal method. The method for manufacturing the composite of the present invention is simple and low-cost, and the one-dimensional nanomaterial is homogeneously distributed on the porous substrate with tight binding at the interface. The present invention also relates to a surface-modified composite and a method for preparing the same. The composite of the present invention which is hydrophobically modified at the surface can adsorb organic solvents such as toluene, dichlorobenzene, petroleum ether and the like, and greases such as gasoline, lubricating oil, motor oil, crude oil and the like, with a weight adsorption ratio of >10.
Abstract:
A paper sizing or coating composition is provided, which includes; a first binder resin, which is compatible with dry toner binder resin; a second binder resin, which is compatible with liquid toner binder resin, and which is different from the first binder resin; a first pigment, which has a BET surface area of from greater than zero to about 35 m2/g; and a second pigment, which has a BET surface area of about 35 m2/g or greater, and which is different from the first pigment. Recording sheets which include the composition, methods of making the composition and recording sheets, and methods for making an image are provided.
Abstract:
The invention relates to a method for producing a molded body (1) having the following steps: a) providing a foil ply (11); b) applying a plastic molding compound (12) in a predefined three-dimensional shape onto the foil ply (11) by means of a three-dimensional printing method. The invention furthermore relates to a molded body (1) produced in this manner.