Abstract:
A Micro Air-Vehicle (MAV) starting system that provides the combined functions of: packing protection of sensitive vehicle components, a mechanical starting assembly, and a launch pad. The preferred embodiment comprises a container and a container lid with the MAV clamped to the lid. Also disposed on the container lid is a starting assembly. The lid which doubles as a launching pad with the attached MAV is removed from the container, placed on the ground, the MAV is started with the starting mechanism and launched. The arrangement minimizes the physical risk to the operator, minimizes weight of the total MAV system, consumes minimum space in the operators transport system, and eliminates dependence on supply lines for battery replacement or charging.
Abstract:
A portable unmanned air vehicle and launcher system that includes a foldable unmanned air vehicle having a pressure tube; a launch gas reservoir for holding launch gas; a launch tube operatively connected to the launch gas reservoir and having a free end that is positioned in the pressure tube of the air vehicle; a free piston positioned within the launch tube; and a free piston stop to prevent the free piston from leaving the launch tube. A first portion of the launch gas in the launch gas reservoir is released into the launch tube and forces the free piston from an initial position to an end position at which the free piston is stopped by the free piston stop.
Abstract:
An unmanned aerial vehicle (UAV) is provided, that is cost effective to use and manufacture and that includes a low count of component parts, allowing mission planners to use the UAVs in a disposable manner. The UAV includes an airframe having a central body and wings extending from the central body, defining an interior cavity. The airframe includes an upper and a lower shell, each configured of a unitary piece of plastic. The upper and lower shells have walls among them that define a fuel tank and a payload bay in a stacked configuration. The airframe can further include a payload cover configured to enclose the payload bay and to contribute to the central body of the airframe. A launch assembly is also provided. In a first configuration, a launch assembly is provided, that includes a container for housing multiple UAVs and a deployment mechanism that initiates rapid ejection of the UAVs from the container. In a second configuration, a launch assembly is provided, that includes an elastic tether connecting a UAV to an accelerated mass for gentle acceleration to flight speed under a stable tow.
Abstract:
A modular unmanned aerial vehicle (UAV) having a fuselage, a nose cone, a left wing piece, a right wing piece, and a tail section. The tail section and nose cone each join to the fuselage through mating bulkhead structures that provide quick connection capability while being readily separated so as to enable the UAV to break apart at these connection points and thereby absorb or dissipate impact upon landing. The UAV is capable of rapid assembly in the field for two-man launch and data retrieval, as well as quick disassembly into these five component parts for transport and storage in a highly compact transport case that can be carried as a backpack.
Abstract:
A heavier-than-air air vehicle, particularly a long endurance, solar powered, unmanned aerial vehicle (UAV) intended for “perpetual” flight within the stratosphere, is carried to its operational altitude suspended on a tether from a helium balloon. The tether is attached at or towards a tip of the UAV's wing so that it is carried in effectively a 90° banked attitude. At the desired altitude the UAV's powerplant is started and it flies on its tether in an upwardly-spiralling path relative to the balloon until a level or near level attitude is attained, when the tether is released and the UAV is permitted to assume free flight.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that includes an extendable boom. A launch carriage is positioned on a launch guide structure of the boom and carries the aircraft during takeoff. An energy reservoir is configured to provide energy to the launch carriage during takeoff of the aircraft, and can absorb energy from the launch carriage to decelerate the launch carriage after takeoff. The apparatus can further include a transmission that smoothly and rapidly accelerates and/or decelerates the launch carriage.
Abstract:
Methods and apparatuses for capturing and recovering unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be captured by a recovery line in flight, a process that can be aided by a line capture device having a retainer with two portions spaced apart by a distance great enough to receive the recovery line, e.g., to capture the recovery line with increased security. The line capture device can be operatively mounted on a lifting surface of the aircraft.
Abstract:
A portable unmanned air vehicle and launcher system is provided that includes a foldable unmanned air vehicle having a pressure tube; a launch gas reservoir for holding launch gas; a launch tube operatively connected to the launch gas reservoir and having a free end that is positioned in the pressure tube of the air vehicle; a free piston positioned within the launch tube; and a free piston stop to prevent the free piston from leaving the launch tube. A first portion of the launch gas in the launch gas reservoir is released into the launch tube and forces the free piston from an initial position to an end position at which the free piston is stopped by the free piston stop.
Abstract:
Methods and apparatuses for capturing, recovering, disassembling, and storing unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the boom can be extended to deploy a recovery line to capture the aircraft in flight, a process that can be aided by a line capture device having retainers in accordance with further aspects of the invention. The aircraft can then be returned to its launch platform, disassembled, and stored, again with little or no direct manual contact between the operator and the aircraft, for example, by capturing a first wing of the aircraft and securing a second wing before releasing the first.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that operates with a wedge action. A launch carriage carrying an unmanned aircraft is positioned on first and second launch members. At least one of the launch members moves relative to the other from a first position to a second position, causing the launch carriage to move from a first launch carriage position to a second launch carriage position. As the launch carriage moves, it accelerates the aircraft and releases the aircraft for takeoff.