Abstract:
This invention provides method and apparatus for fabricating a MEMS apparatus having a bulk element with hinges underneath. The bulk element may comprise single-crystal silicon, fabricated by way of bulk micromachining techniques. The hinges may be made of thin-films, fabricated by way of surface micromachining techniques. A distinct feature of the MEMS apparatus of the present invention is that by disposing the hinges underneath the bulk element, the surface of the bulk element can be maximized and the entire surface becomes usable (e.g., for optical beam manipulation). Such a feature would be highly advantageous in making arrayed MEMS devices, such as an array of MEMS mirrors with a high optical fill factor. Further, by advantageously making use of both bulk and surface micromachining techniques, a MEMS mirror thus produced is equipped with a large and flat mirror along with flexible hinges, hence capable of achieving a substantial rotational range at modest electrostatic drive voltages.
Abstract:
The effects of diffraction on the pass band may be reduced by appropriate modification of the edges of the micromirrors, by modification of the input and/or output ports to allow for attenuation by rotation of the micromirror about the switching axis, by using rotation of the micromirror about both th e attenuation axis and the switching axis to achieve the desired level of attenuation, by inserting an aperture at a focal plane or external to the device to reduce the magnitude of the micromirror edge diffraction transmitt ed to any or all output ports, or by appropriate filtering of angular frequenci es with a diffraction grating used to separate a multi-channel optical signal into constituent spectral beams. Peak coupling can be attained by dithering the micromirror about an axis tangent to a contour of constant attenuation using simultaneous rotation about the switching and attenuation axes.
Abstract:
The present invention provides a method and apparatus for optical spectral power monitoring employing novel frequency-division-multiplexing detection schemes. The optical spectral power monitoring apparatus of the present invention uses a wavelength-dispersing means (e.g., a diffraction grating) to separate a multi-wavelength optical signal into multiple spectral channels, and an array of beam-modulating elements (e.g., micromirrors) positioned such that each beam-modulating element receives a unique one of the spectral channels. The beam-modulating elements are individually controllable such that the optical power levels of the spectral channels coupled into an output port carry distinct dither modulation signals. By performing a synchronous detection of the dither modulation signals, in conjunction with a predetermined calibration table, an optical power spectrum of the multi-wavelength optical signal can be derived. Such dither modulation signals may also be used as "identification markers" (or frequency tags) for identifying individual spectral channels in an optical networking application.
Abstract:
Optical switches can include collimator elements that accommodate two or more optical ports. This increases the number of ports the switch can accommodate without having to increase the size of other optical components within the switch. Separate deflectors can be used to accommodate optical signals from two different groups of ports. In some embodiments cross-coupling of signals between the two groups can be accomplished through use of re-direction optics.
Abstract:
Optical switches can include collimator elements that accommodate two or more optical ports. This increases the number of ports the switch can accommodate without having to increase the size of other optical components within the switch. Separate deflectors can be used to accommodate optical signals from two different groups of ports. In some embodiments cross-coupling of signals between the two groups can be accomplished through use of re-direction optics.
Abstract:
A MEMS device and fabrication method are disclosed. A bottom substrate having an insulating layer sandwiched between an upper layer and a lower layer may be bonded to a device layer. One or more portions of the upper layer may be selectively removed to form one or more device cavities. Conductive vias may be formed through the lower layer at locations that underlie the one or more device cavities and electrically isolated from the lower layer. Devices may be formed from the device layer. Each device overlies a corresponding device cavity. Each device may be connected to the rest of the device layer by one or more corresponding hinges formed from the device layer. One or more electrical contacts may be formed on a back side of the lower layer. Each contact is electrically connected to a corresponding conductive via.
Abstract:
A method and apparatus for optical spectral power monitoring using a time-division-multiplexed detection scheme. The apparatus uses a wavelength-dispersing means (120) such as a diffraction grating to separate an optical signal into multiple spectral channels, and an array of beam-manipulating elements (140) positioned to correspond with the spectral channels. The beam-manipulating elements are individually controllable so as to direct the spectral channels into an optical detector (150) in a time-division-multiplexed sequence. The apparatus may further employ a polarization diversity scheme for polarization-insensitive operation. This enhances the spectral resolution of the apparatus while providing improved accuracy in spectral power detection. Spectral power monitors constructed according to the present disclosure are well-suited for WDM optical networking applications.
Abstract:
A MEMS device and fabrication method are disclosed. A bottom substrate having an insulating layer sandwiched between an upper layer and a lower layer may be bonded to a device layer. One or more portions of the upper layer may be selectively removed to form one or more device cavities. Conductive vias may be formed through the lower layer at locations that underlie the one or more device cavities and electrically isolated from the lower layer. Devices may be formed from the device layer. Each device overlies a corresponding device cavity. Each device may be connected to the rest of the device layer by one or more corresponding hinges formed from the device layer. One or more electrical contacts may be formed on a back side of the lower layer. Each contact is electrically connected to a corresponding conductive via.