Abstract:
PROBLEM TO BE SOLVED: To provide a novel method and apparatus for separating a multi-wavelength optical signal along with a reference signal by wavelength into multiple spectral channels and a reference spectral component. SOLUTION: By aligning the reference spectral component at a predetermined location, the spectral channels simultaneously impinge onto designated locations, e.g., on an array of beam-receiving elements positioned in accordance with the spectral array. The reference spectral component may be further maintained at the predetermined location by way of servo-control, thereby ensuring that the spectral channels stay aligned at the designated locations. The present invention can be used to construct a new line of servo-based optical systems, including spectral power monitors and optical multiplexers/demultiplexers, for WDM optical networking applications. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
This invention provides a novel method and apparatus which use a wavelength-dispersing means such as a diffraction grating (220) to spatially separate a multi-wavelength optical signal along with a reference signal by wavelength into multiple spectral channels and a reference spectral component in a spectral array with a predetermined relative alignment. By aligning the reference spectral component at a predetermined location, the spectral channels simultaneously impinge onto designated locations, e.g., on an array of beam-receiving elements positioned in accordance with the spectral array. The reference spectral component may be further maintained at the predetermined location by way of servo-control (260), thereby ensuring that the spectral channels stay aligned at the designated locations. The present invention can be used to construct a new line of servo-based optical systems, including spectral power monitors and optical multiplexers/demultiplexers, for WDM optical networking applications.
Abstract:
This invention provides a novel method and apparatus which use a wavelength-dispersing means such as a diffraction grating to spatially separate a multi-wavelength optical signal along with a reference signal by wavelength into multiple spectral channels and a reference spectral component in a spectral array with a predetermined relative alignment. By aligning the reference spectral component at a predetermined location, the spectral channels simultaneously impinge onto designated locations, e.g., on an array of beam-receiving elements positioned in accordance with the spectral array. The reference spectral component may be further maintained at the predetermined location by way of servo-control, thereby ensuring that the spectral channels stay aligned at the designated locations. The present invention can be used to construct a new line of servo-based optical systems, including spectral power monitors and optical multiplexers/demultiplexers, for WDM optical networking applications.
Abstract:
The present invention provides a method and apparatus for optical spectral power monitoring employing novel frequency-division-multiplexing detection schemes. The optical spectral power monitoring apparatus of the present invention uses a wavelength-dispersing means (e.g., a diffraction grating) to separate a multi-wavelength optical signal into multiple spectral channels, and an array of beam-modulating elements (e.g., micromirrors) positioned such that each beam-modulating element receives a unique one of the spectral channels. The beam-modulating elements are individually controllable such that the optical power levels of the spectral channels coupled into an output port carry distinct dither modulation signals. By performing a synchronous detection of the dither modulation signals, in conjunction with a predetermined calibration table, an optical power spectrum of the multi-wavelength optical signal can be derived. Such dither modulation signals may also be used as "identification markers" (or frequency tags) for identifying individual spectral channels in an optical networking application.
Abstract:
The present invention provides a method and apparatus for optical spectral power monitoring that employ a time-division-multiplexed detection scheme. The optical spectral power monitoring apparatus of the present invention uses a wavelength-dispersing means such as a diffraction grating to separate a multi-wavelength optical signal into multiple spectral channels and an array of beam-manipulating elements positioned to correspond with the spectral channels. The beam-manipulating elements are individually controllable so as to direct the spectral channels into an optical detector in a time-division-multiplexed sequence. The optical spectral power monitoring apparatus may further employ a polarization diversity scheme, thereby becoming polarization insensitive. This enables the apparatus of the present invention to enhance spectral resolution, while providing improved accuracy in optical spectral power detection. Accordingly, a variety of novel optical spectral power monitors can be constructed according to the present invention, that are well suitable for WDM optical networking applications.
Abstract:
A method and apparatus for optical spectral power monitoring using a time-division-multiplexed detection scheme. The apparatus uses a wavelength-dispersing means (120) such as a diffraction grating to separate an optical signal into multiple spectral channels, and an array of beam-manipulating elements (140) positioned to correspond with the spectral channels. The beam-manipulating elements are individually controllable so as to direct the spectral channels into an optical detector (150) in a time-division-multiplexed sequence. The apparatus may further employ a polarization diversity scheme for polarization-insensitive operation. This enhances the spectral resolution of the apparatus while providing improved accuracy in spectral power detection. Spectral power monitors constructed according to the present disclosure are well-suited for WDM optical networking applications.
Abstract:
This invention provides a novel method and apparatus which use a wavelength-dispersing means such as a diffraction grating to spatially separate a multi-wavelength optical signal along with a reference signal by wavelength into multiple spectral channels and a reference spectral component in a spectral array with a predetermined relative alignment. By aligning the reference spectral component at a predetermined location, the spectral channels simultaneously impinge onto designated locations, e.g., on an array of beam-receiving elements positioned in accordance with the spectral array. The reference spectral component may be further maintained at the predetermined location by way of servo-control, thereby ensuring that the spectral channels stay aligned at the designated locations. The present invention can be used to construct a new line of servo-based optical systems, including spectral power monitors and optical multiplexers/demultiplexers, for WDM optical networking applications.