Abstract:
The present invention relates to a method of manufacturing an MEMS device that comprises the steps of forming a first membrane layer over a sacrificial base layer, forming a second membrane layer over the first membrane layer, wherein the second membrane layer comprises lateral recesses exposing lateral portions of the first membrane layer and forming stoppers to restrict movement of the first membrane layer. Moreover, it is provided MEMS device comprising a movable membrane comprising a first membrane layer and a second membrane layer formed over the first membrane layer, wherein the second membrane layer comprises lateral recesses exposing lateral portions of the first membrane layer.
Abstract:
The MEMS fixed capacitor (1) comprises a bottom metal electrode (3) formed onto a substrate (S), a top metal electrode (2) supported by metal pillars (5) above the bottom metal electrode, and a gas-containing gap (4) forming a non-solid dielectric layer between said top (2) and bottom (3) metal electrodes ; the distance (D) between the top (2) and bottom (3) metal electrodes is not more than 1µm and the thickness (E) of the top metal electrode (2) is not less than 1µm.
Abstract:
The MEMS structure comprises: - a flexible membrane (6), which has a main longitudinal axis (6a) defining a longitudinal direction (X), - at least one pillar (3, 3') under the flexible membrane (6), - electric lowering actuation means (7) that are adapted to bend down the flexible membrane (6) into a down forced state - electric raising actuation means (8) that are adapted to bend up the flexible membrane (6) into an up forced state. The electric lowering actuation means (7) or the electric raising actuation means (8) comprise an actuation area (7c or 8c), that extends under a part of the membrane (6) and that is adapted to exert pulling forces on the membrane (6) on both sides of the said at least one pillar (3) in the longitudinal direction (X).
Abstract:
Le dispositif microélectromécanique ou nanoélectromécanique (1) comorte une membrane (3), qui est mobile en translation le long d'au moins un premier axe de translation (XX') sensiblement parallèle au substrat (2), et dans au moins une première direction (X1) le long de ce premier axe de translation (XX'). La face inférieure (3a) de la membrane (3) comporte d'une part une partie active (31), qui est positionnée au droit d'une électrode d'actionnement (5) sous-jacente, et dont la zone d'actionnement électrostatique (31a) la plus proche de l'électrode d'actionnement (5) est située dans un premier plan de référence (P1) lorsque la membrane n'est pas actionnée, et d'autre part au moins un décrochement (30), qui s'étend en direction du substrat jusqu'à un deuxième plan (P2) plus proche de électrode d'actionnement (5) que ledit plan de référence (P1). Pour au moins une partie des positions en translation de la membrane (3), ledit décrochement (30) comporte au moins une première portion (30a) qui n'est pas positionnée au droit de l'électrode d'actionnement (5) et qui est proche d'au moins une première portion (50a) de la tranche (50) de l'électrode d'actionnement (5). Le dispositif comporte (a) (figure 2) une couche diélectrique (7), qui recouvre au moins ladite première portion (50a) de tranche (50) de l'électrode d'actionnement (5), et/ou (b) (figure 22) une couche diélectrique, qui recouvre la face inférieure (3a) de la membrane (3) au moins dans une zone correspondant à ladite première portion (30a) du décrochement (30).
Abstract:
The MEMS structure comprises: a flexible membrane (6), which has a main longitudinal axis (6a) defining a longitudinal direction (X), at least one pillar (3, 3') under the flexible membrane (6), electric lowering actuation means (7) that are adapted to bend down the flexible membrane (6) into a down forced state electric raising actuation means (8) that are adapted to bend up the flexible membrane (6) into an up forced state. The electric lowering actuation means (7) or the electric raising actuation means (8) comprise an actuation area (7c or 8c), that extends under a part of the membrane (6) and that is adapted to exert pulling forces on the membrane (6) simultaneously on both sides of the said at least one pillar (3) in the longitudinal direction (X).
Abstract:
El conmutador de puntos de cruce para RF MEMS (1) comprende una primera línea de transmisión (10) y una segunda línea de transmisión (11) que cruza la primera línea de transmisión; la primera línea de transmisión (10) comprende dos porciones de línea de transmisión separadas (100, 101), y un elemento conmutador (12) que conecta eléctricamente en forma permanente a dichas dos porciones de línea de transmisión separadas (100, 101); la segunda línea de transmisión (11) cruza la primera línea de transmisión (10) entre las dos porciones de línea de transmisión separadas (100, 101); el conmutador de puntos de cruce para RF MEMS (1) también comprende medios de accionamiento (121) para accionar el elemento conmutador (12) por lo menos entre una primera posición, en la que el elemento conmutador (12) está conectando eléctricamente a dichas dos porciones de línea de transmisión separadas (100, 101) de la primera línea de transmisión (10) y la primera (10) y la segunda (11) líneas de transmisión están desconectadas eléctricamente, y una segunda posición, en la que el elemento conmutador (12) está conectando eléctricamente a dichas dos porciones de línea de transmisión separadas (100, 101) de la primera línea de transmisión (10) y también está conectando eléctricamente entre sí a las dos líneas de transmisión (10, 11).
Abstract:
The RF MEMS crosspoint switch (1) comprising a first transmission (10) line and a second transmission line (11) that crosses the first transmission line ; the first transmission line (10) comprises two spaced-apart transmission line portions (100, 101), and a switch element (12) that permanently electrically connects the said two spaced-apart transmission line portions (100, 101) ; the second transmission line (11) crosses the first transmission line (10) between the two spaced-apart transmission line portions (100, 101); the RF MEMS crosspoint switch (1) further comprises actuation means (121) for actuating the switch element (12) at least between a first position, in which the switch element (12) is electrically connecting the said two spaced-apart transmission line portions (100, 101) of the first transmission line (10) and the first (10) and second (11) transmission lines are electrically disconnected, and a second position, in which the switch element (12) is electrically connecting the said two spaced-apart transmission line portions (100, 101) of the first transmission line (10) and is also electrically connecting the two transmission lines (10, 11) together.
Abstract:
The MEMS structure comprises: - a flexible membrane (6), which has a main longitudinal axis (6a) defining a longitudinal direction (X), - at least one pillar (3, 3') under the flexible membrane (6), - electric lowering actuation means (7) that are adapted to bend down the flexible membrane (6) into a down forced state - electric raising actuation means (8) that are adapted to bend up the flexible membrane (6) into an up forced state. The electric lowering actuation means (7) or the electric raising actuation means (8) comprise an actuation area (7c or 8c), that extends under a part of the membrane (6) and that is adapted to exert pulling forces on the membrane (6) on both sides of the said at least one pillar (3) in the longitudinal direction (X).