Abstract:
Light-emitting devices and methods of making the same are described whereby lenses of any array include a material with a higher refractive index than an encapsulation layer of a substrate layer, the refractive index of the material being in a range of greater than 1.7 to 1.9 at 400 nm. The material forming the lenses includes nanocomposite comprised of inorganic nanocrystals and a polymeric matrix, wherein the nanocrystals are selected from the group consisting of ZrO2, ZnO, MgO, HfO2, NbO5, Ta2O5 and Y2O3. A 3-4 micron thick sample of the nanocomposite has an optical transmittance of at least 80% over a range of 440 nm to 800 nm.
Abstract:
The present disclosure provides nanocrystal(s) containing silicone capping agent(s). Dispersions containing the nanocrystal(s) and at least one of silicone monomer(s), silicone pre-polymer(s), and silicone polymer(s), and optionally additionally containing a solvent are also described. Cured dispersions, compositions of nanocrystal(s) and LEDs and related structures containing the composition(s) are provided in the present disclosure.
Abstract:
An integrated circuit is made by depositing a pinning layer on a substrate. A block copolymer photoresist is formed on the pinning layer. The block copolymer has two blocks A and B that do not self-assemble under at least some annealing conditions. The exposed block copolymer photoresist is processed to cleave at least some block copolymer bonds in the exposed selected regions. The exposed pinning layer is processed to create a chemical epitaxial pattern to direct the local self assembly of the block copolymer.
Abstract:
The current disclosure relates to a nanocomposites coating including metal oxide nanocrystals, the nanocomposites further include a mixture of acrylates monomers and oligomers to provide a curable coating that provides high refractive index, high transmittance, and high temperature stability.
Abstract:
Semiconductor nano-particles, due to their specific physical properties, can be used as reversible photo-bleachable materials for a wide spectrum, from far infrared to deep UV. Applications include, reversible contrast enhancement layer (R-CEL) in optical lithography, lithography mask inspection and writing and optical storage technologies.
Abstract:
The present invention overcomes many of the disadvantages of prior lithographic microfabrication processes while providing further improvements that can significantly enhance the ability to make more complicated semiconductor chips at lower cost. A new type of programmable structure for exposing a wafer allows the lithographic pattern to be changed under electronic control. This provides great flexibility, increasing the throughput and decreasing the cost of chip manufacture and providing numerous other advantages. The programmable structure consists of an array of shutters that can be programmed to either transmit light to the wafer (referred to as its nullopennull state) or not transmit light to the wafer (referred to as its nullclosednull state). The programmable structure can comprise or include an array of selective amplifiers. Thus, each selective amplifier is programmed to either amplify light (somewhat analogous to the nullopennull or nulltransparentnull state of a shutter) or be nullnon-amplifyingnull (its nullclosednull or nullopaquenull state). In the non-amplifying state, some portion of the incident light is transmitted through the amplifier material. The shutters and selective amplifiers can work in tandem to form a nullprogrammable layernull. A programmable technique is provided for creating a pattern to be imaged onto a wafer that can be implemented as a viable production technique. Thus, the present invention also provides a technique of making integrated circuits. A diffraction limiter can be used to provide certain advantages associated with contact lithography without requiring some of the disadvantages of contact lithography.
Abstract:
The present disclosure provides a high-refractive index acrylic formulation embedded with sub-30 nm metal oxide nanocrystals. The formulation is solvent-free, low-viscosity, injectable (among other film deposition techniques) and produces high-refractive index, high transparency nanocomposites for a variety of optical applications including OLED lighting and display applications.
Abstract:
The present disclosure provides a high-refractive index acrylic formulation comprised of sub-30 nm zirconium and/or titanium oxide nanocrystals. The formulation is solvent-containing or solvent-free, of imprintable and/or inkjet-printable viscosities, can be applied by multiple film deposition techniques and produces high-refractive index, high transparency nanocomposites for a variety of optical applications including AR/VR/MR and display applications.
Abstract:
The present disclosure provides nanocrystals(s) containing silicone capping agent(s). Dispersions containing the nanocrystal(s) and at least one of silicone monomer(s), silicone pre-polymer(s), and silicone polymer(s), and optionally additionally containing a solvent are also described. Cured dispersions, compositions of nanocrystal(s) and LEDs and related structures containing the composition(s) are provided in the present disclosure.
Abstract:
Preparation of semiconductor nanocrystals and their dispersions in solvents and other media is described. The nanocrystals described herein have small (1-10 nm) particle size with minimal aggregation and can be synthesized with high yield. The capping agents on the as-synthesized nanocrystals as well as nanocrystals which have undergone cap exchange reactions result in the formation of stable suspensions in polar and nonpolar solvents which may then result in the formation of high quality nanocomposite films.