Abstract:
Photochromic and electrochromic hexadiene compounds that are reversibly convertible between ring-open and ring-closed isomeric forms. The conversion between the different isomeric forms may be induced by light or electricity. The compounds may include a charge transfer moiety including electron donor and acceptor groups. The electron donor and acceptor are linearly conjugated in the ring-open form to enable electron transfer but are electrically insulated in the ring-closed form. Photoresponsive compounds may be synthesized by any of several methods disclosed, e.g., by reacting diene precursors with dienophiles in a condensation reaction. The compounds may be utilized in reactivity-gated photochromic or electrochromic applications. Compounds may be used in a method to selectively release a releasable agent, such as a small molecule.
Abstract:
The disclosure provides, in part a seal system for sealing a film. The disclosure further provides, in part, a sealed film comprising a first and a second substrate; a first and a second electrode disposed on the surface of at least one of the substrates; a switching material disposed between the first and second substrates; a first seal and a second seal; the first seal disposed along an edge of the switching material, separating the switching material from the second seal.
Abstract:
Novel photochromic and electrochromic hexadiene compounds are described. The compounds are reversibly convertible between ring-open and ring-closed isomeric forms as indicated in structures I(o) and I(c) below. (See formula in original abstract of application) The conversion between the different isomeric forms may be induced by light or electricity. In one embodiment the compounds may include a charge transfer moiety including electron donor and acceptor groups. The electron donor and acceptor are linearly conjugated in the ring-open form to enable electron transfer but are electrically insulated in the ring-closed form. Methods for synthesizing the compounds from photochemically and/or electrically inert precursors are also described. For example, the photoresponsive compounds may be synthesized by reacting diene precursors with dienophiles in a condensation reaction. The compounds may be utilized in reactivity-gated photochromic or electrochromic applications. In one embodiment of the invention, compounds of the invention may be used in a method to selectively release a releasable agent, such as a small molecule. According to this method, a photochemically inert precursor compound is reacted with the releasable agent to form a carrier compound comprising a switching moiety, the switching moiety being reversibly convertible between a thermally unstable form and a thermally stable form. The switching moiety may be selectively converted between the first and second forms to cause controlled release of the releasable agent from the carrier compound.
Abstract:
A switching material comprising one or more than one polymers and an electrolyte comprising a salt and a solvent portion comprising one or more solvents; and one or more compounds having electrochromic and photochromic properties dispersed homogeneously through the switching material; and wherein the switching material is transitionable from a light state to a dark state on exposure to UV light and from a dark state to a light state with application of an electric voltage.
Abstract:
A control system (10) for a variable transmittance optical filter assembly (46) includes a controller (48) in communicatively coupled to a pair of load terminals (45), and a memory (49) communicatively coupled to the controller (48) and having encoded thereon statements and instructions executable by the controller (48) to transition the optical filter assembly (46) between operating states when coupled to the pair of load terminals (45). The controller is operable to maintain the optical filter assembly (46) at a certain transmittance value between lower an upper transmittance thresholds in a hold mode by applying a pulse width modulated voltage signal (30) across the load terminals (45).
Abstract:
A control system (10) for a variable transmittance optical filter assembly (46) includes a controller (48) in communicatively coupled to a pair of load terminals (45), and a memory (49) communicatively coupled to the controller (48) and having encoded thereon statements and instructions executable by the controller (48) to transition the optical filter assembly (46) between operating states when coupled to the pair of load terminals (45). The controller is operable to maintain the optical filter assembly (46) at a certain transmittance value between lower an upper transmittance thresholds in a hold mode by applying a pulse width modulated voltage signal (30) across the load terminals (45).
Abstract:
The present invention relates to diarylethene compounds and uses thereof. More specifically, the compounds are reversibly convertible between ring-open and ring-closed isomers.
Abstract:
A simplified switchable object and methods of making same are provided. The methods may include steps of applying a switchable material on a first surface of a first substrate, the switchable material having a thickness and a shape; applying a barrier material on the first substrate, circumferential to the switchable material; and applying a second substrate over top of, and in contact with, the switchable material and the barrier material, the first substrate, second substrate and barrier material defining a closed chamber encapsulating the switchable material. The methods may further include a step of applying a seal material.
Abstract:
A switching material comprising one or more than one polymers and an electrolyte comprising a salt and a solvent portion comprising one or more solvents; and one or more compounds having electrochromic and photochromic properties dispersed homogeneously through the switching material; and wherein the switching material is transitionable from a light state to a dark state on exposure to UV light and from a dark state to a light state with application of an electric voltage.