Abstract:
The invention relates to a channel comprising device (1) comprising a channel (10) with a channel wall (15), a channel inlet (11) and a channel outlet (12), wherein the channel wall comprises a polymer (150),wherein the polymer (150) comprises an epoxy-based polymer. The invention further relates to a system (1000) comprising a Coriolis-type flow measuring device(50) comprising the channel comprising device (1) according to the invention and an actuation system (450) configured to let at least part of the channel (10) vibrate thereby causing temporary displacements. The invention, further relates a method for measuring a property of a fluid, wherein the property of the fluid is a property selected form the group consisting of a mass flow rate of the fluid and a density of the fluid.
Abstract:
Method for manufacturing fluoro(hydro)carbon-substituted silicon or germanium quantum dots which comprises the steps of:—reacting a Zintl salt or intermetallic compound of post-transition metals or metalloids of silicon or germanium with a halogen-containing oxidizing agent to form halide-terminated silicon or germanium quantum dots,—reacting the halide-terminated silicon or germanium quantum dots with a fluoro(hydro)carbon agent selected from the group of metal-fluoro (hydro)carbon compounds of the formula MRq, wherein M is a metal selected from Group 1, 2, 4, 11, 12, 13, or 14 of the periodic table of elements, q is an integer which corresponds to the valence of the metal, and R is CFnHm-fluoro/hydro-carbon, wherein n is 1 or 2, m is 0 or 1, and the total of n and m is 2, wherein each R may be the same or different, metal-fluoro (hydro)carbon halide compounds of the formula NQaRp wherein N is a metal selected from Group 1, 2, 4, 11, 12, 13, or 14 of the periodic table of elements, Q is a halogen selected from F, Cl, Br, or I, wherein each Q may be the same or different, a and p are integers in the range of 1-3, and the total of a and p corresponds to the valence of the metal, and R is as defined above, and metal-fluoro (hydro)carbon compounds of the formula CuR2Li, wherein R is as defined above, to form fluoro(hydro)carbon-substituted silicon or germanium quantum dots. The method makes it possible to obtain quantum dots with a tailored emission spectrum with high quality in a stable process. The particles obtained by this process are also claimed.
Abstract:
The invention relates to a method of fabricating a micro machined channel, comprising the steps of providing a substrate of a first material and having a buried layer of a different material therein, and forming at least two trenches in said substrate by removing at least part of said substrate. Said trenches are provided at a distance from each other and at least partly extend substantially parallel to each other, as well as towards said buried layer. The method comprises the step of forming at least two filled trenches by providing a second material different from said first material and filling said at least two trenches with at least said second material; forming an elongated cavity in between said filled trenches by removing at least part of said substrate extending between said filled trenches; and forming an enclosed channel by providing a layer of material in said cavity and enclosing said cavity.
Abstract:
A method of printing a cellular solid by direct bubble writing comprises introducing an ink formulation comprising a polymerizable monomer and a gas into a nozzle, which includes a core flow channel radially surrounded by an outer flow channel. The ink formulation is directed into the outer flow channel and the gas is directed into the core flow channel. The ink formulation and the gas are ejected out of the nozzle as a stream of bubbles, where each bubble includes a core comprising the gas and a liquid shell overlying the core that comprises the ink formulation. After ejection, the polymerizable monomer is polymerized to form a solid polymeric shell from the liquid shell, and the bubbles are deposited on a substrate moving relative to the nozzle. Thus, a polymeric cellular solid having a predetermined geometry is printed.
Abstract:
The present disclosure relates to a conductivity measuring system of a fluid including a solvent and an ionic solute, comprising: —a holder comprising an isolated holder wall defining a fluid channel for holding fluid, wherein the holder is shaped to allow an electrical current induced in the fluid to form a current loop; —an excitation device configured to excite an electric field inside a first part of the fluid channel, the excitation device comprising an electrical signal generator configured to generate an alternating current signal and a conducting slab; —a sensing device arranged at a position remote from the first part of the fluid channel and configured to sense a voltage signal (V) resulting from the changing magnetic field resulting from the current generated inside the fluid by the excitation device.
Abstract:
A composition comprising a liposome comprising a first phospholipid comprising a C14-C19:0 fatty acid and a C3-C15:0 fatty acid with a c-terminal carboxyl or a carboxaldehyde group; a second phospholipid comprising a C14-C19:0 fatty acid and a C14-C19:0 fatty acid and a sterol. The first phospholipid is preferably a phosphatidylcholine. The second phospholipid is preferably HSPC and the sterol is preferably cholesterol. In some embodiments, the molar ratio of the respective ingredients is 2-3:5-6:2-3; preferably 2:6:2; or 3:5:2, respectively. The invention also relates to the use of this composition in the targeting of M2 macrophages.
Abstract:
The present invention relates to a method for preparing a membrane comprising sorbent particles that bind urea. The invention also relates to the sorbent-comprising membranes per se, and to methods of using the membranes. The membranes are useful for undergoing subsequent reactions with small molecules such as urea, for instance to remove urea from a solution.
Abstract:
The present disclosure relates to a conductivity measuring system of a fluid including a solvent and an ionic solute, comprising: —a holder comprising an isolated holder wall defining a fluid channel for holding fluid, wherein the holder is shaped to allow an electrical current induced in the fluid to form a current loop; —an excitation device configured to excite an electric field inside a first part of the fluid channel, the excitation device comprising an electrical signal generator configured to generate an alternating current signal and a conducting slab; —a sensing device arranged at a position remote from the first part of the fluid channel and configured to sense a voltage signal (V) resulting from the changing magnetic field resulting from the current generated inside the fluid by the excitation device.
Abstract:
Aspects of the present disclosure describe improved supercontinuum generation based upon alternating optical dispersion along a waveguide length that advantageously generates much more spectral bandwidth than possible with conventional, prior art techniques without losing coherence as well as supporting a larger range of pulse energies (i.e., for lower than conventionally allowed pulse energies or high pulse energies).