Abstract:
버스트 리드동작에 적합한 상변화 메모리 장치 및 그에 따른 데이터 리딩방법이 개시되어 있다. 본 발명의 상변화 메모리 장치는, 복수의 비트라인 및 복수의 워드라인과; 상기 복수의 비트라인과 복수의 워드라인의 교차점 마다 연결된 복수의 상변화 메모리 셀을 포함하는 메모리 셀 어레이 블록과; 상기 비트라인들에 각기 대응적으로 연결되며, 버스트 리드 동작을 위해 동일 워드라인에 연결된 메모리 셀들의 데이터를 한꺼번에 래치한 후, 순차로 변경되는 컬럼 어드레스에 응답하여 상기 래치된 데이터를 연속적으로 제공하는 센스앰프 동작블록을 구비한다. 본 발명의 상변화 메모리 장치에 따르면, 버스트 리드 동작이 지원되어 상변화 메모리 장치의 리드 동작 퍼포먼스가 개선되는 장점이 있다. 상변화 메모리, 센스앰프, 리드 동작, 버스트 리드
Abstract:
상 변화 메모리 장치의 기입 전류 량을 제어하는 프로그래밍 방법 및 프로그래밍 방법을 구현하는 기입 드라이버 회로가 개시된다. 본 발명의 실시예에 따른 상 변화 메모리 장치의 프로그래밍(programming) 방법은, 인가되는 전류 펄스에 응답하여 고 저항 또는 저 저항으로 상태가 변화되는 상 변화 물질을 구비하는 상 변화 메모리 장치의 프로그래밍(programming) 방법에 있어서, 외부 온도가 증가될수록 상기 상 변화 물질의 상태를 고 저항 상태로 만들기 위한 리셋 전류의 양 및 상기 상 변화 물질의 상태를 저 저항 상태로 만들기 위한 셋 전류의 양을 증가시키는 단계를 구비한다. 제 1 실시예에 따른 상 변화 메모리 장치의 프로그래밍(programming) 방법은 상기 상 변화 물질의 고 저항 상태에서의 저항 값과 저 저항 상태에서의 저항 값의 비가 외부 온도 변화에 상관없이 일정하게 유지되도록 상기 리셋 전류의 전류 양과 상기 셋 전류의 전류 양이 외부 온도가 증가될수록 증가된다. 본 발명에 따른 상 변화 메모리 장치의 프로그래밍 방법 및 기입 드라이버 회로는 외부 온도가 증가할수록 상 변화 메모리 셀로 인가되는 기입 전류를 증가시켜 독출 동작시 리셋 저항과 셋 저항의 저항비를 일정하게 유지키고 독출 동작의 센싱 마진을 충분히 확보할 수 있는 장점이 있다.
Abstract:
본 발명은 하나의 센싱 트랜지스터와 하나의 프로그램 트랜지스터로 구성되는 축소가능한 2개의 트랜지스터 메모리(STTM) 셀들이 매트릭스 형태로 배치된 STTM 셀의 레이아웃 구조에 관한 것으로서, 센싱 트랜지스터의 소오스와 연결되는 그라운드 라인과 센싱 트랜지스터의 드레인과 연결되는 비트 라인을 수직 방향으로 배치하여 STTM 셀의 센싱 트랜지스터의 드레인과 인접하는 STTM 셀의 센싱 트랜지스터의 드레인과 공통연결되도록 함으로써 센싱 트랜지스터들의 드레인 단자를 서로 격리시키기 위한 불필요한 공간을 최소화하여 셀 어레이 면적을 저감하고, 고집적화할 수 있는 축소가능한 2개의 트랜지스터 메모리(STTM) 셀의 레이아웃 구조가 개시된다.
Abstract:
A phase-change memory device is provided, which can maintain contact resistance range even though the size of a contact area of a phase-change material and a bottom contact differs in unit cells. A write driver(720) receives data and applies the data to a phase-change memory cell, and applies a sub write current to the phase-change memory cell in response to a first or the nth current control signal. A data sensing part(730) outputs a logic value of the data stored in the phase-change memory cell as a cell data signal by sensing the stored data. A comparison part(740) judges whether the data applied to the phase-change memory cell is equal to the data stored in the phase-change memory cell in response to the cell data signal. And a pulse control unit(750) generates the first or the nth current control signal in response to the detection signal and the pulse signal. A latch unit(760) latches the data applied to the phase-change memory cell.
Abstract:
PURPOSE: A write driver circuit of a phase change memory device is provided to select the reset pulse or the set pulse in response to the logic level of the data. CONSTITUTION: A write driver circuit of a phase change memory device includes a pulse selection circuit(510), a current control circuit(520) and a current driving circuit(530). The pulse selection circuit outputs one of the reset pulse and the set pulse and the data in response to the logic level of the data. The current control circuit receives the bias voltage, outputs the control signal as the second level during the enable period of the reset pulse when the data is a first level and outputs the control signal as a first level during the enable period of the set pulse when the data is second level. And, the current driving circuit outputs the write current to the phase change memory device array through the first node in response to the control signal during the enable period of the reset pulse or the set pulse and discharges the first node during the disable period of the reset pulse or the set pulse.
Abstract:
PURPOSE: A phase transition RAM(Random Access Memory) is provided to improve the degree of integration in a memory cell array by using memory cells having a phase transition material pattern in common. CONSTITUTION: A phase transition RAM has a memory cell array where a plurality of cell regions are arranged. Each cell region includes a first conduction line(BL0) extended in a first direction, a plurality of second conduction lines(WL0,WL1) extended in a second direction, a phase transition material pattern(GST) electrically connected to the first conduction line, and an activation region(ATR0). The activation region has a first semiconductor region(S0) and a second semiconductor region(D0). The first semiconductor region is electrically connected to the phase transition material pattern and the second semiconductor region is disposed between the second conduction lines. The second semiconductor regions of cell regions have the phase transition material pattern in common.
Abstract:
PURPOSE: A method for driving a sense amplifier in a semiconductor memory device is provided to generate a word line activation signal and a sense amplifier activation and synchronization signal for controlling operations of the semiconductor memory device by using a rising edge and a falling edge of an ATD pulse. CONSTITUTION: The ATD pulse of predetermined width is generated in response to transition of an address signal. A word line activation signal is generated by using a rising edge of the ATD pulse. A synchronous signal(PSAEQb) of a latch type sense amplifier(10) is generated by using a falling edge of the ATD pulse. A pulse control portion(6) provides an ATD pulse to a word line drive portion(8). The word line drive portion(8) is operated according to operation timing. The word line drive portion(8) generates the word line activation signal in response to the rising edge of the ATD pulse.
Abstract:
PURPOSE: A method and a circuit for driving a word line in a semiconductor memory device are provided, which performs a word line boosting simply without lowering the whole speed of a memory operation by improving a boosting operation, and removes a prior ring oscillator to recover a lowered boosting level, and maintains a boosting level of the word line stably without adopting the ring oscillator, and also reduces the load of a layout and power consumption. CONSTITUTION: The word line driving circuit includes an ATD(Address Transfer Detect) pulse generation part(10), a pulse control part(12), a predecoder(4), a booster(14) and a main decoder(6). The ATD pulse generation part generates an ATD pulse signal by sensing a transition of an address signal being output through an address buffer. The pulse control part generates a pulse word line enable signal(PWL) related to a word line driving in response to a rising edge of the ATD pulse signal, and generates a boosting enable signal(Pboost) in response to a falling edge of the ATD pulse signal. The predecoder generates a signal by predecoding the applied address signal in response to the pulse word line enable signal. The booster generates a boosted voltage(Boosted PWR) having a higher level than a power supply voltage in response to the boosting enable signal. And the main decoder receives the boosted voltage as a driving power supply voltage and makes the word line selected by decoding the predecoding signal to be boosted as a higher level than the power supply voltage.
Abstract:
PURPOSE: A vertical cavity surface emitting laser is provided to be capable of forming an insulation and/or an upper electrode on a connection part, connecting a post and a block, instead of a lateral surface of a trench. CONSTITUTION: A lower reflector layer(110) is formed on a substrate(100) by stacking chemical semiconductors of different compositions in turn. An active layer(120) is formed on the lower reflector layer(110) and generates rays of light by electron-hole recombination. A high resistance part(135) guides flowing of electrons. An upper reflector layer(140) is formed on the active layer and/or the high resistance part by stacking chemical semiconductors of different compositions, which contain an impurity opposite to that of the lower reflector layer(110). A post(200) has a window and generates a laser beam according to an applied power. A block(300) surrounds the post and is spaced apart from the post. A connection part(250) connects the post and the block and has a predetermined width. A trench(220) is formed on the upper reflector layer, the active layer and the lower reflector layer except for the connection part, so as to separate the post and the block. An insulation layer is formed on a region comprising the post, the connection part and the block except for the window and a peripheral region of the window. An upper electrode(160) is formed on the insulation layer and a lower electrode(170) is formed below the substrate.
Abstract:
PURPOSE: A surface emitting laser array and a producing method thereof are provided to narrow the intervals of the surface emitting laser posts and increase the number of laser matrix. CONSTITUTION: A surface emitting layer array comprises a substrate(100') and a plurality of posts(A1,A2) arranged in a matrix on the substrate. A first insulating layer(150) is formed on a portion of the substrate, other than windows(210,310) from which light emits. A first upper electrode layer(160) having a predetermined pattern is formed around the window of one of the posts and on the first insulating layer. A second insulating layer(250) is formed on a region other than the window of the other post. A second upper electrode layer(260) electrically isolated from the first upper electrode layer is formed around the window of the other post and on the second insulating layer. A lower electrode layer(170) is formed on the back of the substrate. The surface emitting laser array has the multi-layered upper electrode layers and insulating layers.