Abstract:
PURPOSE: To provide a method for preparing TiC-based cermet without core-rim structure, and a method for preparing high hardness TiC-based cermet having a microstructure in which components are uniform and having a grain size of submicron. CONSTITUTION: The method for preparing ultrafine grained cermet with homogeneous solid solution grain structure comprises: a step of producing a mixed powder consisting of 50 to 90 wt.% of TiC, 5 to 30 wt.% of TMxCy(x and y are integers) and 5 to 30 wt.% of nickel(Ni), cobalt(Co), or a mixture of nickel(Ni) and cobalt(Co) by mixing titanium(Ti) powder, transition metals(TM) powder, carbon(C) powder, nickel(Ni) powder and cobalt(Co) powder; a step of producing nano-composite powder, (Ti,TM)C-(Ni,Co) by performing high energy ball milling after injecting the mixed powder along with balls having a certain diameter into a reaction container; and a step of forming and sintering the produced nano-composite powder.
Abstract:
PURPOSE: A fabrication method of nanocrystalline titanium nitride/titanium-metal compound composite powder by forming titanium nitride and titanium intermetallic compound by reaction milling using titanium and metal nitride as raw material powder is provided. CONSTITUTION: The method comprises the processes of mixing titanium (Ti) powder having purity of 95% or more and particle size of 100 nm or less with metal nitride powder having purity of 95% or more and particle size of 50 nm or less in a mole ratio of 1:1 to 20:1; injecting the mixture along with balls having diameter of 5 to 30 mm into a reaction jar; introducing argon (Ar), nitrogen or air into a reaction chamber; and performing high energy ball milling on the mixture, wherein the metal nitride is selected from boron nitride (BN), silicon nitride (Si3N4) and aluminum nitride (AlN), wherein the reaction chamber and balls are made of tool steel, stainless steel, hard metal or zirconia, wherein the mixture and balls are injected into the reaction chamber in a weight ratio of 1:1 to 1:100, wherein the milling process is performed using shaker mill, planetary mill or attritor mill, wherein particle size of powder formed by the reaction milling is 10 nm or less, and wherein the milling process is performed for 1 to 48 hours.
Abstract:
A beverage can cooler is composed of a cooling or heating shoe(7) of metal materials which has good thermal conductivity, a heat capacitor(9) for receiving absorbed heat by the thermal conductive module when cooled, a radiation pin(11) for emitting heat of the heat capacitor outward, radiation fan for the forced cooling to improve the heat emission effect of radiation pin and a diameter adjustment lever to fix beverage cans received within the cooling or heating room. Accordingly, a can-cooler is produced to be small in size and slight in weight for the purpose of heating or cooling beverage cans handily.
Abstract:
An amorphous hydrogen permeation alloy for membranes having excellent hydrogen permeability and stable structure and a manufacturing method thereof are provided. The amorphous hydrogen permeation alloy for membranes comprises: one or more first metals selected from a group containing nickel, cobalt, and iron; one or more second metals selected from a group containing niobium, tantalum, and vanadium; and one or more third metals including zirconium. The amount of the third metal can be 25at% or less. [Reference numerals] (S10) Provide a mixture by mutually mixing a first metal, a second metal, and a third metal;(S20) Provide an alloy by vacuum-dissolve the mixture;(S30) Provide a thin film by melting and spinning the alloy
Abstract:
본 발명은 표면 변형층을 통한 스피넬 산화물층의 형성을 촉진함으로서, 크롬의 휘발을 억제하고, 전기 전도도 및 내산화성을 향상시킨 연료전지 금속접속자 및 그 제조방법에 관한 것이다. 본 발명은 연료전지 금속 접속자용 페라이트계 강재의 표면에 Cr 2 MnO 4 스피넬 산화물층의 형성을 촉진시키는 표면 변형층을 포함하는 전기 전도도 및 내산화성이 우수한 연료전지 금속접속자 및 그 제조방법을 제공한다. 연료전지(Fuel Cell), 접속자(interconnector), 전기 전도도(Electrical Conductivity)
Abstract:
PURPOSE: A hydrogen storage material and a method for manufacturing the same are provided to increase the speed of storing hydrogen while reducing the temperature of emitting hydrogen. CONSTITUTION: A hydrogen storage material includes a lithium boron hydride, a calcium hydride, and a niobium fluoride. The amount of the niobium fluoride is 5wt%-30wt%. The molar ratio of the lithium boron hydride to the calcium hydride is 4-8. If the hydrogen storage material emits hydrogen, the lithium boron hydride and the calcium hydride are reacted with each other to be changed into a lithium hydride(LiH) and calcium boride.
Abstract:
A method for preparing magnesium-based hydrogen storage materials is provided to improve the hydrogen storage rate of magnesium hydroxide while minimizing the reduction of hydrogen storage capacity of the magnesium hydroxide, by using high-energy ball milling. A mixture of magnesium hydroxide and transition metal halide is formed(S10). The mixture and balls are inputted into a case(S20). Inert gas or hydrogen gas fills the case(S30). A high-energy ball milling process is performed on the mixture for 5-30 minutes(S40). In the step of forming the mixture, 0.1-5 mol% of transition metal halide powder is added based on the mixture. The balls have diameters of 5-30 mm. A weight ratio of the mixture to the balls is 1:1-1:100.
Abstract:
본 발명은 초미세 결정립 질화티타늄/붕화티타늄 복합 서메트 제조방법에 관한 것으로, 특히 티타늄(Ti)과 질화붕소(BN) 및 스테인레스강(stainless steel) 분말을 원료분말로 하여 반응밀링법(reaction milling)에 의해 질화티타늄(TiN)/붕화티타늄(TiB 2 )/스테인레스강 나노 복합분말을 제조하고, 제조된 나노 복합분말을 액상소결하여 초미세 질화티타늄/붕화티타늄 서메트를 제조하는 방법에 관한 것이다. 본 발명의 초미세 결정립 질화티타늄/붕화티타늄 복합 서메트 제조방법은 티타늄 분말과 질화붕소 분말을 3:2의 몰비로 혼합하는 제1공정;상기 혼합 분말에 스테인레스강 분말 5 ~ 60 중량 %를 추가로 혼합하는 제2공정; 상기 혼합 분말을 소정 직경의 볼과 함께 반응용기에 투입한 후 하이에너지볼밀링을 수행하여 질화티타늄/붕화티타늄/스테인레스강 나노 복합분말을 생성하는 제3공정; 및 상기 생성된 나노 복합분말을 성형 및 소결하는 제4공정;을 포함한다. 초미세, 결정립, 질화티타늄, 붕화티타늄, 복합 서메트