Abstract:
본 발명은 고온강도가 우수한 스테인레스 강재 및 그 제조방법에 관한 것으로, 보다 상세하게는 발전 플랜트 등과 같이 고온의 부식성 환경에서 사용하여도 우수한 내식성은 물론이고 고온 강도 및 크리프(creep)강도가 우수한 오스테나이트계 스테인레스 강재 및 그 제조방법에 관한 것이다. 상기 본 발명의 과제를 해결하기 위한 본 발명의 스테인레스 강재는 석출지수가 1.5~2.5인 것을 특징으로 한다.
Abstract:
PURPOSE: A hydrogen storage material and a method for manufacturing the same are provided to increase the speed of storing hydrogen while reducing the temperature of emitting hydrogen. CONSTITUTION: A hydrogen storage material includes a lithium boron hydride, a calcium hydride, and a niobium fluoride. The amount of the niobium fluoride is 5wt%-30wt%. The molar ratio of the lithium boron hydride to the calcium hydride is 4-8. If the hydrogen storage material emits hydrogen, the lithium boron hydride and the calcium hydride are reacted with each other to be changed into a lithium hydride(LiH) and calcium boride.
Abstract:
PURPOSE: Stainless steel and a manufacturing method thereof are provided to improve the high temperature strength and creep resistance of stainless steel. CONSTITUTION: Stainless steel having excellent high temperature strength comprises C 0.01~0.1 weight%, Si 0.1~0.9 weight%, Mn 0.1~2 weight%, Cr 15~22 weight%, Ni 7~15 weight%, Nb 0.1~1.0 weight%, V 0.1~1.0 weight%, Co 0.1~0.3 weight%, Cu 0.01~5 weight%, Al 0.03 weight% or less, N 0.01~0.25 weight%, O 0.001~0.008 weight%, and the rest Fe and inevitable impurities.
Abstract:
본 발명은 비자성 또는 자성 반도체에 특정한 스핀 방향을 가진 전자를 주입할 때 높은 스핀주입 효율을 나타낼 수 있는 다층막 구조 및 그 제조방법에 관한 것으로, 보다 상세하게는 전이금속 질화물 중 전도성 질화물인 TiN, TaN, NbN, ZrN 등을 강자성 물질과 반도체 물질의 사이층으로 사용한 다층막 구조 및 그 제조방법에 관한 것이다. 본 발명에 의한 다층막 구조는 강자성 물질/반도체의 접합에서 나타나는 쇼트키 장벽(Schottky Barrier), 전도도 불일치(Conductivity Mismatch), 그리고 계면 형상의 불균일성을 나타내지 않으며, 높은 스핀주입 효율을 달성한다. 따라서 본 발명에서 얻어진 다층막 구조를 이용하면 종래의 강자성 물질/반도체 접합에 비해 더 높은 스핀주입효율을 가진 소자를 제조할 수 있는 장점이 있다. 스핀주입, 전도성 질화물, 사이층, 다층막 구조, 스핀전자소자, 스핀 반도체, 반금속
Abstract:
본 발명은 자성금속 박막 사이에 미소 두께의 균일한 비자성금속 박막을 형성할 수 있는 다층박막 제조방법에 관한 것이다. 본 발명은 자성금속 박막을 형성하는 단계; 자성금속 박막위에 알루미늄을 증착하는 단계; 증착된 알루미늄위에 자성금속을 증착하여 알루미나이드 박막을 형성하는 단계; 그리고 알루미나이드 박막위에 자성금속 박막을 증착하는 단계로 이루어진다. 증착되는 알루미늄의 원자 에너지는 원자당 5eV이하이고, 두께는 5Å 내지 15Å이다. 자성금속은 Co, Fe 및 Ni로 이루어진 군 중에서 선택된 1종 이상이다. 알루미나이드 박막의 결정학적 정합성을 향상시키기 위해 진공로에서 200℃ 내지 400℃의 온도범위에서 30분 내지 60분동안 열처리하는 단계를 더 포함한다. 다층박막, 자성금속 박막, 비자성금속 박막, 자기저항, 알루미나이드
Abstract:
본 발명은 펄라이트 콜로니의 크기를 측정하기 위해서 전자후방산란회절(EBSD) 및 입계연결 개념을 이용한 측정방법에 관한 것으로서, 전자후방산란회절(EBSD)을 이용하여 펄라이트상을 갖는 강재의 결정방위를 측정하는 단계; 상기 측정된 결정방위를 이용하여 결정방위 사이의 방위차를 계산하여 방위차 맵(또는 패턴질 맵, pattern quality map)을 작성하는 단계; 상기 방위차를 이용하여 콜로니 구분 기준값(θ st )과 입계완성 기준값(θ gb )을 설정하는 단계; 및 상기 설정된 콜로니 구분 기준값 및 입계완성 기준값과 상기 방위차를 비교하여 펄라이트 콜로니 입계(boundary)를 결정하는 단계를 포함한다. 펄라이트 콜로니(pearlite colony), 전자후방산란회절(electron back scattered diffraction), 입계연결(boundary completion)
Abstract:
A multilayered structure having high spin injection efficiency using a conductive nitride as a spacer layer is provided to obtain spin injection efficiency of a high level only by correcting conventional equipment without fabricating additional equipment. A spacer layer(2) is formed on a semiconductor layer(3), made of a conductive nitride. A spin injection electrode layer(1) is formed on the conductive nitride spacer layer, made of a ferroelectric material and injecting spin to the semiconductor layer through the conductive nitride spacer layer. Transition metal can be doped into the conductive nitride spacer layer. The interface of the semiconductor layer and the conductive nitride spacer layer can be made of an ohmic contact.
Abstract:
본 발명은 자성금속 박막 사이에 미소 두께의 균일한 비자성금속 박막을 형성할 수 있는 다층박막 제조방법에 관한 것이다. 본 발명은 자성금속 박막을 형성하는 단계; 자성금속 박막위에 알루미늄을 증착하는 단계; 증착된 알루미늄위에 자성금속을 증착하여 알루미나이드 박막을 형성하는 단계; 그리고 알루미나이드 박막위에 자성금속 박막을 증착하는 단계로 이루어진다. 증착되는 알루미늄의 원자 에너지는 원자당 5eV이하이고, 두께는 5Å 내지 15Å이다. 자성금속은 Co, Fe, Ni, 및 이들의 화합물 중 어느 하나로 이루어진다. 알루미나이드 박막의 결정학적 정합성을 향상시키기 위해 진공로에서 200℃ 내지 400℃의 온도범위에서 30분 내지 60분동안 열처리하는 단계를 더 포함한다.