Abstract:
Disclosed is a system configured to project a beam of radiation onto a target portion of a substrate within a lithographic apparatus. The system comprises a mirror having an actuator for positioning the mirror and/or configuring the shape of the mirror, the actuator also providing active damping to the mirror, and a controller for generating actuator control signals for control of said actuator(s). A first coordinate system is used for control of said actuator(s) when positioning said mirror and/or configuring the shape of said mirror and a second coordinate system is used for control of said actuator(s) when providing active damping to said mirror.
Abstract:
In a lithographic projection apparatus, a structure surrounds a space between the projection system and a substrate table of the lithographic projection apparatus. A gas seal is formed between said structure and the surface of said substrate to contain liquid in the space.
Abstract:
The invention relates to a dual stage lithographic apparatus, wherein two substrate stages are constructed and arranged for mutual cooperation in order to perform a joint scan movement. The joint scan movement brings the lithographic apparatus from a first configuration, wherein immersion liquid is confined between a first substrate held by the first stage of the stages and a projection system of the apparatus, to a second configuration, wherein the immersion liquid is confined between a second substrate held by the second stage of the two stages and the projection system, such that during the joint scan movement the liquid is essentially confined within the space with respect to the projection system.
Abstract:
A method of exposing a patterned area on a substrate using an EUV lithographic apparatus having a demagnification of about 5× and a numerical aperture of about 0.4 is disclosed. The method comprises exposing a first portion of the patterned area on the substrate using a first exposure, the first portion dimensions are significantly less than the dimensions of a conventional exposure, and exposing one or more additional portions of the patterned area on the substrate using one or more additional exposures, the additional portions having dimensions which are significantly less than the dimensions of a conventional exposure. The method further comprises repeating the above to expose a second patterned area on the substrate, the second patterned area being provided with the same pattern as the first patterned area, wherein a distance between center points of the first and second patterned areas corresponds with a dimension of a conventional exposure.
Abstract:
A device having a waveguide formed of a continuous body of material that is transparent to radiation that passes through the waveguide, wherein the body has an input surface and an output surface, and a cooler configured to cool the input surface and/or the output surface. An exposure apparatus having a programmable patterning device that comprises a plurality of radiation emitters, configured to provide a plurality of radiation beams; and a projection system, comprising a stationary part and a moving part, configured to project the plurality of radiation beams onto locations on a target that are selected based on a pattern, wherein at least one of the radiation emitters comprises a waveguide configured to output a radiation beam that comprises unpolarized and/or circularly polarized radiation.
Abstract:
A map of the surface of a substrate is generated at a measurement station. The substrate is then moved to where a space between a projection lens and the substrate is filled with a liquid. The substrate is then aligned using, for example, a transmission image sensor and, using the previous mapping, the substrate can be accurately exposed. Thus the mapping does not take place in a liquid environment.
Abstract:
An immersion lithographic projection apparatus is disclosed in which liquid is provided between a projection system of the apparatus and a substrate. The use of both liquidphobic and liquidphilic layers on various elements of the apparatus is provided to help prevent formation of bubbles in the liquid and to help reduce residue on the elements after being in contact with the liquid.
Abstract:
Liquid is supplied to a space between the projection system and the substrate by an inlet. In an embodiment, an overflow region removes liquid above a given level. The overflow region may be arranged above the inlet and thus the liquid may be constantly refreshed and the pressure in the liquid may remain substantially constant.
Abstract:
A device having a waveguide formed of a continuous body of material that is transparent to radiation that passes through the waveguide, wherein the body has an input surface and an output surface, and a cooler configured to cool the input surface and/or the output surface. An exposure apparatus having a programmable patterning device that comprises a plurality of radiation emitters, configured to provide a plurality of radiation beams; and a projection system, comprising a stationary part and a moving part, configured to project the plurality of radiation beams onto locations on a target that are selected based on a pattern, wherein at least one of the radiation emitters comprises a waveguide configured to output a radiation beam that comprises unpolarized and/or circularly polarized radiation.
Abstract:
Disclosed is a system configured to project a beam of radiation onto a target portion of a substrate within a lithographic apparatus. The system includes a radiation source. The radiation source includes a grating structure operable to suppress the zeroth order of reflected radiation for at least a first component wavelength. The grating structure has a periodic profile including regularly spaced structures providing three surface levels, such that radiation diffracted by the grating structure includes radiation of three phases which destructively interfere for at least the zeroth order of the reflected radiation for the first component wavelength. The grating structure is on a radiation collector within the source.