Abstract:
Embodiments describe a transmitter coil arrangement for a wireless charging device including: a first layer of transmitter coils, each transmitter coil in the first layer of transmitter coils is arranged in a first radial direction; a second layer of transmitter coils, each transmitter coil in the second layer of transmitter coils is arranged in a second radial direction that is offset from the first radial direction by an angular offset; and a third layer of transmitter coils, each transmitter coil in the top layer of transmitter coils is arranged in a third rotational direction that is offset from both the first and second radial directions by the angular offset, where the second layer of transmitter coils is disposed between the first and third layers of transmitter coils
Abstract:
This application relates to magnetically actuated electrical connectors. The electrical connectors includes movable magnetic elements that move in response to an externally applied magnetic field. In some embodiments, the electrical connectors includes recessed contacts that move from a recessed position to an engaged position in response to an externally applied magnetic field associated with an electronic device to which the connector is designed to be coupled. In some embodiments, the external magnetic field has a particular polarity pattern configured to draw contacts associated with a matching polarity pattern out of the recessed position.
Abstract:
A first and second electronic device each including a connection surface and a magnetic element. The first and second devices may be in contact along the respective connection surfaces. The magnetic elements may be configured to align the first and second devices by moving either or both of the first and second devices relative to each other to achieve an aligned position. The magnetic element may also be operative to resist disconnection of first and second electronic devices when in the aligned position.
Abstract:
Connector receptacles having a contoured form factor that allows their use in stylized enclosures. These receptacles may also be contoured to avoid circuitry internal to the device enclosure. The contoured form factor may also simplify the assembly of the connector receptacle.
Abstract:
Devices and methods of manufacture for improved connector plugs are provided herein. In one aspect, an exemplary connector plug comprises a shield shell having a proximal stepped-down portion and a boot member that fittingly receives the stepped-down proximal portion so that an outer surface of the distal shield shell and the boot member is about flush with a minimal or negligible space therebetween. In some embodiments, the shield shell comprises a separate front shield shell and a reduced profile rear shield shell welded together so as to provide the advantageous reduced profile and improved aesthetic appearance, while maintaining the structural integrity of the connector. In many embodiments, weld strength of the shield shells is improved by providing line-to-line contact between shield shells by using deflectable tabs and/or utilizing thermal expansion properties of one or both shield shells.
Abstract:
A modular material antenna assembly is provided that includes an antenna block having a portion with a shape that interlocks with a corresponding portion of an electrically non-conductive frame and secures the antenna block to the electrically non-conductive frame. The electrically non-conductive frame is attached to an interior of an electrically conductive housing so that the electrically non-conductive frame and the electrically conductive housing form an integrated structure. An antenna flex is then mechanically secured to the antenna block. The antenna flex may also be electrically connected to a circuit board. The frame is designed to support a cover glass for the portable electronic device and may be affixed to a housing. The dielectric constant of the antenna block is substantially less than the dielectric constant of the frame.
Abstract:
An electronic device comprising a device housing (490) having a housing opening; a receptacle connector (140) having a connector housing (142) that defines a cavity (147) aligned with the housing opening and extending into the device housing (490), the connector housing including first and second opposing interior sides extending into the device housing and third and fourth opposing interior sides extending between the first and second opposing sides into the housing; first and second opposing spring retention contacts (145a, 145b) both having a curved contact surface that extends into the cavity (147) from the third interior side for the first retention contact (145a) and from the fourth interior side for the second spring retention contact (145b); the receptacle connector (140) includes eight contacts (146(1)..146(8)) spaced apart in a single row; and first and second connector detect contacts (148(1), 148(2)) disposed within the cavity (147) slightly behind the rows of contacts (146(1)..146(8)) and on opposite sides of the plurality of contacts.
Abstract:
A first and second electronic device each including a connection surface and a magnetic element. The first and second devices may be in contact along the respective connection surfaces. The magnetic elements may be configured to align the first and second devices by moving either or both of the first and second devices relative to each other to achieve an aligned position. The magnetic element may also be operative to resist disconnection of first and second electronic devices when in the aligned position.