Abstract:
An optical amplifier site comprising: (i) a distributed Raman amplifier providing a first signal gain level; (ii) an optical amplifier located downstream from the distributed Raman amplifier, the optical amplifier being indirectly coupled to the distributed Raman amplifier, the optical amplifier including a first amplification medium, providing a second signal gain level; (iii) at least one optical signal loss element located between the distributed Raman amplifier and the optical amplifier and, contributing at least 0.5dB optical loss to the amplifier site; (iv) a second amplification medium located down-stream from the first amplification medium; and (v) at least another one optical signal loss element, this at least another one optical signal loss element being located between said first amplification medium and said second amplification medium.
Abstract:
Disclosed are refractive index profiles for total dispersion compensating optical waveguide fibers for use in high data rate, long length telecommunications systems. The optical waveguide fibers in accord with the invention provide substantially equal compensation of total dispersion over a range of wavelengths, thus facilitating wavelength division multiplexed systems. Also disclosed are spans of optical waveguide fiber that include a length of transmission fiber together with a length of the compensating fiber. The spans are joined end to end in series arrangement to form the optical waveguide fiber part of a telecommunication system.
Abstract:
Disclosed is a dispersion compensating waveguide fiber suitable for use in high data rate, high light power telecommunications systems of intermediate length. The refractive index profile of the compensation fiber is segmented. The core region includes three, four, or five, a central segment (28), a first annular segment (30), a second annular segment (32), a third annular segment (34), and a fourth annular segment (36) having different relative refractive indexes. The segment relative refractive indexes and radii are chosen to provide negative total dispersion and negative total dispersion slope over an extended wavelength range. The index profile design is flexible enough to provide compensated links having total dispersion that is positive, negative, or zero, while maintaining appropriate total dispersion slope compensation. In addition, the waveguide fiber of the invention may be cabled or otherwise buffered prior to its use in a communications system.
Abstract:
Disclosed is a dispersion compensating optical fiber that includes a core surrounded by a cladding layer of refractive index DELTA c. The core includes at least three radially adjacent regions, a central core region having DELTA 1, a moat region having a refractive index DELTA 2 and an annular ring region having a refractive index DELTA 3, such that DELTA 1 > DELTA 3 > DELTA c > DELTA 2. The fiber exhibits a dispersion slope which is less than -1.0 ps/nm /km over the wavelength range 1525 to 1565, a dispersion at 1550 which is less than -30 ps/nm/km, and a kappa value obtained by dividing the dispersion value by the dispersion slope which is greater than 35 and preferably between 40 and 100.
Abstract:
Disclosed is a dispersion compensating waveguide fiber suitable for use in high data rate, high light power telecommunications systems of intermediate length. The refractive index profile of the compensation fiber is segmented. The segment relative refractive indexes and radii are chosen to provide negative total dispersion and negative total dispersion slope over an extended wavelength range. The index profile design is flexible enough to provide compensated links having total dispersion that is positive, negative, or zero, while maintaining appropriate total dispersion slope compensation. In addition, the waveguide fiber of the invention may be cabled or otherwise buffered prior to its use in a communications system.
Abstract:
Disclosed is a dispersion compensating optical fiber that includes a core surrounded by a cladding layer of refractive index nCL. The core includes at least three radially adjacent regions, a central core region, a moat region having a refractive index nM that is sufficiently lower than nCL such that DELTAM
Abstract:
A cylindrical glass body having a low water content centerline region and method of manufacturing such a cylindrical glass body for use in the manufacture of optical waveguide fiber is disclosed. The centerline region of the cylindrical glass body has a water content sufficiently low such that an optical waveguide fiber made from the cylindrical glass body of the present invention exhibits an optical attenuation of less than about 0.35 dB/km, and preferably less than about 0.31 dB/km at a measured wavelength of 1380 nm. A low water content plug used in the manufacture of such a cylindrical glass body, an optical waveguide fiber having a low water peak, and an optical fiber communication system incorporating such an optical waveguide fiber is also disclosed.
Abstract:
An optical fiber and method of making, wherein the optical fiber alternates between regions having different diameters along its length, wherein the refractive index of said blank and the diameters of said fiber are chosen to result in a fiber having alternating regions of positive and negative dispersion at a wavelength which is greater than 1480 nm, yet preferably has a low net dispersion and dispersion slope. A preferred such profile consists of a core region surrounded by a cladding region, said core region comprised of an central core region which is updoped with respect to said cladding region, said central core region surrounded by a moat region which is downdoped with respect to said cladding region, and said moat region is surrounded by an annular ring region which is updoped with respect to said cladding region. In addition, a family of profiles is presented which may be used to produce very low dispersion slope fibers. When used in conjunction with alternating positive and negative dispersion regions, lower net dispersion slope can be achieved. Alternatively, the family of profiles is useful in conventional WDM applications.
Abstract:
A fiber optic waveguide is disclosed. The fiber optic waveguide includes a core region, and a moat region surrounding the core region. A cladding region surrounds the moat region and the core region. The cladding region includes a lattice of column structures disposed within a solid background matrix. A diameter of the core region is sized for making contact with the moat region for creating an extended core region at longer wavelengths. The core region, the moat region, and the cladding region function to produce unique dispersion compensating properties, which include negative dispersion and positive dispersion. The core region may be formed from a high index material and the moat region may be formed from a material having a refractive index lower than the refractive index of the core region. The cladding region is formed from a material having a refractive index which is higher than the index of the moat region and lower than the refractive index of core region.