Abstract:
A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
Abstract:
Architectures and techniques for co-integration of heterogeneous materials, such as group III-V semiconductor materials and group IV semiconductors (e.g., Ge) on a same substrate (e.g. silicon). In embodiments, multi-layer heterogeneous semiconductor material stacks having alternating nanowire and sacrificial layers are employed to release nanowires and permit formation of a coaxial gate structure that completely surrounds a channel region of the nanowire transistor. In embodiments, individual PMOS and NMOS channel semiconductor materials are co-integrated with a starting substrate having a blanket layers of alternating Ge/III-V layers. In embodiments, vertical integration of a plurality of stacked nanowires within an individual PMOS and individual NMOS device enable significant drive current for a given layout area.
Abstract:
A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
Abstract:
A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
Abstract:
An interlayer is used to reduce Fermi-level pinning phenomena in a semiconductive device with a semiconductive substrate. The interlayer may be a rare-earth oxide. The interlayer may be an ionic semiconductor. A metallic barrier film may be disposed between the interlayer and a metallic coupling. The interlayer may be a thermal-process combination of the metallic barrier film and the semiconductive substrate. A process of forming the interlayer may include grading the interlayer. A computing system includes the interlayer.
Abstract:
Techniques and mechanisms for forming a gate dielectric structure and source or drain (S/D) structures on a monolayer channel structure of a transistor. In an embodiment, the channel structure comprises a two-dimensional (2D) layer of a transition metal dichalcogenide (TMD) material. During fabrication of the transistor structure, a layer of a dielectric material is deposited on the channel structure, wherein the dielectric material is suitable to provide a reaction, with a plasma, to produce a conductive material. While a first portion of the dielectric material is covered by a patterned structure, a second portion of the dielectric material is exposed to a plasma treatment to form a source or dielectric (S/D) electrode structure that adjoins the first portion. In another embodiment, the dielectric material is an oxide of a Group V-VI transition metal.
Abstract:
Techniques and mechanisms for providing gate dielectric structures of a transistor. In an embodiment, the transistor comprises a thin channel structure which comprises one or more layers of a transition metal dichalcogenide (TMD) material. The channel structure forms two surfaces on opposite respective sides thereof, wherein the surfaces extend to each of two opposing edges of the channel structure. A composite gate dielectric structure comprises first bodies of a first dielectric material, wherein the first bodies each adjoin a different respective one of the two opposing edges, and variously extend to each of the surfaces two surfaces. The composite gate dielectric structure further comprises another body of a second dielectric material other than the first dielectric material. In another embodiment, the other body adjoins one or both of the two surfaces, and extends along one or both of the two surfaces to each of the first bodies.
Abstract:
Transistor structures with monocrystalline metal chalcogenide channel materials are formed from a plurality of template regions patterned over a substrate. A crystal of metal chalcogenide may be preferentially grown from a template region and the metal chalcogenide crystals then patterned into the channel region of a transistor. The template regions may be formed by nanometer-dimensioned patterning of a metal precursor, a growth promoter, a growth inhibitor, or a defected region. A metal precursor may be a metal oxide suitable, which is chalcogenated when exposed to a chalcogen precursor at elevated temperature, for example in a chemical vapor deposition process.
Abstract:
Integrated circuitry comprising a ribbon or wire (RoW) transistor stack within which the transistors have different threshold voltages (Vt). In some examples, a gate electrode of the transistor stack may include only one workfunction metal. A metal oxide may be deposited around one or more channels of the transistor stack as a solid-state source of a metal oxide species that will diffuse toward the channel region(s). As diffused, the metal oxide may remain (e.g., as a silicate, or hafnate) in close proximity to the channel region, thereby altering the dipole properties of the gate insulator material. Different channels of a transistor stack may be exposed to differing amounts or types of the metal oxide species to provide a range of Vt within the stack. After diffusion, the metal oxide may be stripped as sacrificial, or retained.
Abstract:
A thin film transistor (TFT) structure includes a gate electrode, a gate dielectric layer on the gate electrode, a channel layer including a semiconductor material with a first polarity on the gate dielectric layer. The TFT structure also includes a multi-layer material stack on the channel layer, opposite the gate dielectric layer, an interlayer dielectric (ILD) material over the multi-layer material stack and beyond a sidewall of the channel layer. The TFT structure further includes source and drain contacts through the interlayer dielectric material, and in contact with the channel layer, where the multi-layer material stack includes a barrier layer including oxygen and a metal in contact with the channel layer, where the barrier layer has a second polarity. A sealant layer is in contact with the barrier layer, where the sealant layer and the ILD have a different composition.