Abstract:
A method of data flow control between a mobile and base station of a wireless communication system where the mobile is transferring wirelessly part or all of the data received from the base station to a local device in accordance with a standard such as Bluetooth or Wi-Fi. The rate at which the mobile is receiving data from the base station is typically much higher than the rate at which the mobile is transferring the data to the local device. The mobile sends a STOP data flow control command to the base station causing the base station to either stop transmitting data or transmit data at a lower data rate thus prevention mobile buffer overflow and loss of data from occurring. When conditions are favorable for reception of data, the mobile sends START data flow control commands to the base station allowing the base station to resume transmitting data at a higher data rate. The higher data rate may be equal to the original established data rate.
Abstract:
A method for processing control information in a wireless communications system is described in which portions of the control information are separately encoded and decoded such that transmission format information for a corresponding data transmission can be determined with a reduced set of decoded control information. The control information is convolutionally coded using either a single set of tail bits or by judiciously dispersing the tail bits among different portions of the encoded signaling information.
Abstract:
A variable length sequence number is used to identify data units in a communication channel. The sequence number associated with the most recent data that has been received successfully and the sequence number expected with the next new data message to be received are examined to determine the minimum size sequence number necessary to unambiguously identify to the transmitter incorrectly received data that must be retransmitted in a later message. The receiver provides the transmitter with the sequence number associated with the last successfully received byte of data and the sequence number associated with the next expected byte of data. The receiver communicates this information to the transmitter using a NAK control message. The transmitter then uses the sequence number of the next byte of data to be transmitted and the information received in the control message from the receiver to determine the smallest number of bits necessary to represent the sequence numbers for both data transmissions and the retransmission of data that was not received properly by the receiver.
Abstract:
A method of adaptive Walsh code allocation in a wireless communication system. The method includes the step of each voice user transmitting quality condition signal, such as a pilot signal strength measurement to a corresponding base station. Upon receiving each quality condition signal, the method includes determining a spreading factor for each voice user in response to its quality condition signal. A Walsh code is thereafter allocated to each voice user in response to the determined corresponding spreading factor. Thus, for example, if the quality condition signal of a first voice user is relatively higher than the quality condition signal of a second voice user, the spreading factor allocated to the first voice user should be longer than the spreading factor of the second voice user.
Abstract:
A wireless communications system is provided in which transmissions may be made in either a diversity mode or a non-diversity mode on a slot by slot basis. When transmitting in the diversity mode, separate pilot signals are delivered over a first and second antenna. When transmitting in the non-diversity mode, substantially identical pilot signals are delivered over the first and second antennas with available pilot power substantially equally distributed therebetween.
Abstract:
A method is provided for controlling transmissions between a base station and a mobile station in a wireless system using a plurality of subcarriers. A subcarrier allocation scheme is proposed where a total scheduling interval is divided into at least two sub-intervals. In a first interval, data transmission takes place using a large number of subcarriers. In a second interval, a smaller number of subcarriers are used for transmission. In a time-synchronized system, the first interval overlaps with the first interval in at least some neighboring cells and the second interval overlaps with the second interval in at least some neighboring cells.
Abstract:
In an OFDM communications system, cyclic prefix and postfix samples are used to improve the reliability of a received OFDM symbol. Typically, the prefix and postfix extensions are merely repeated portions of the OFDM symbol that are ordinarily discarded during the decoding process. In the instant invention, the cyclic prefix and postfix samples are not indiscriminately discarded, but rather, they are first analyzed to determine which, if any, have been corrupted. The corrupted samples are discarded, but the uncorrupted samples are combined with the corresponding portion of the OFDM symbol to improve the OFDM symbol demodulation/decoding reliability.
Abstract:
A method of adaptive Walsh code allocation in a wireless communication system. The method includes the step of each voice user transmitting quality condition signal, such as a pilot signal strength measurement to a corresponding base station. Upon receiving each quality condition signal, the method includes determining a spreading factor for each voice user in response to its quality condition signal. A Walsh code is thereafter allocated to each voice user in response to the determined corresponding spreading factor. Thus, for example, if the quality condition signal of a first voice user is relatively higher than the quality condition signal of a second voice user, the spreading factor allocated to the first voice user should be longer than the spreading factor of the second voice user.