Abstract:
Methods, systems, and devices are described for wireless communication. A first device, such as a user equipment (UE) may be configured with a peak data rate that corresponds to the radio frequency (RF) capacity of a modem and a sustained data rate that corresponds to the baseband capacity. The first device may receive a set of data blocks during a transmission burst from a second device. The quantity of data blocks in the burst may be based on the peak data rate. The first device may store time domain samples or frequency tones for the data and then power down the RF components for an interval based on how long it will take to process the data. The first device may then process the data at the sustained data rate. After the rest interval, the first device may power up the RF components and receive another burst of data.
Abstract:
When embedding a signal into a selected subcarrier of a multicarrier downlink waveform of regular data/control signaling, a base station modulates the embedded signal with a different modulation scheme than the other data in the downlink waveform. The base station nulls adjacent subcarriers to minimize interference at a low-power wake-up receiver of an IOE device(s). The IOE device wakes up the low-power wake-up receiver at scheduled times to listen for the signal. For synchronization signals, the IOE device corrects a local clock based on a correlation value of the signal to a predetermined sequence. For wake-up signals, the IOE device correlates whatever is detected at the antenna to a predetermined sequence and compares the correlation value to a predetermined threshold. If the threshold is met, the IOE device registers a wake-up signal and wakes the primary transceiver of the device. If not, the receiver goes back to sleep.
Abstract:
Se revelan sistemas, métodos, aparatos y productos de programas para computadora para realizar conmutación dinámica del ancho de bandaentre señales de control y señales de datos de diferentes anchos de banda.Se revelan formatos de trama en donde las señales de control se transmiten en diferentesanchos de bandaa las señales de datos.Se revelan arquitecturas de receptores para recibir formatos de señalización.Un receptor puede recibir una señal de control de banda relativamente estrecha mientras consume una energía relativamente bajay luego se ajustan dinámicamente las características de diversos componentes para recibir una señal de datos con un mayor ancho de bandamientras consume una energía relativamente mayor.
Abstract:
Systems, methods, apparatuses, and computer-program products for performing dynamic bandwidth switching between control signals and data signals of differing bandwidths are disclosed. Frame formats are disclosed in which control signals are transmitted at different bandwidths than data signals. Receiver architectures for receiving the signaling formats are disclosed. A receiver can receive a relatively narrowband control signal while consuming a relatively low power and then dynamically adjust characteristics of various components to receive a data signal at a higher bandwidth while consuming a relatively higher power.
Abstract:
Un circuito electrónico para procesar una senal digital pueden incluir una pluralidad de circuitos de retardo digital, estando cada uno de ellos configurado para producir una réplica retardada de la senal digital; una pluralidad de convertidores digital-analógico, estando cada uno de ellos configurado para convertir la senal digital o la réplica retardada desde uno de los circuitos de retardo, en una senal analógica; una pluralidad de circuitos de ganancia analógica, estando cada uno de ellos configurado para ajustar la senal analógica desde uno de los convertidores digital-analógico mediante un factor de ganancia, y teniendo cada uno de ellos una salida; y un sumador analógico configurado para sumar las salidas de los circuitos de ganancia analógica. La cantidad de circuitos de retardo y la magnitud de los retardos y ganancias pueden ser seleccionadas para hacer que el circuito funcione como un filtro de paso de banda, un filtro de paso alto, un filtro de paso bajo, un filtro de muesca, o cualquier otro tipo de filtro. El circuito puede ser utilizado en una amplia variedad de aplicaciones que incluyen un transceptor (tal como una estación abonada) y en aplicaciones de banda ultra ancha.
Abstract:
A method of performing a debug operation on a processor after a power collapse is provided. An idle state of the processor is detected during an execution mode of the processor. The idle state is determined to be associated with a power collapse event. A debug state of the processor is restored by loading debug registers within the processor during the execution mode.
Abstract:
An electronic circuit for processing a digital signal may include a plurality of digital delay circuits, each configured to produce a delayed replica of the digital signal; a plurality of digital-to-analog converters, each configured to convert the digital signal or the delayed replica from one of the delay circuits into an analog signal; a plurality of analog gain circuits, each configured to adjust the analog signal from one of the digital-to-analog converters by a gain factor and each having an output; and an analog summer configured to sum the outputs of the analog gain circuits. The number of delay circuits and the magnitude of the delays and gains may be selected to cause the circuit to function as a band pass filter, a high pass filter, a low-pass filter, a notch filter, or any other type of filter. The circuit may be used in a broad variety of applications, including a transceiver (such as a subscriber station) and in ultra wideband applications.
Abstract:
Systems and techniques are disclosed relating to wireless communications. The systems and techniques involve wireless communications wherein a process, module or communications terminal schedules communications over a frame having a plurality of time slots. The process, module or communications terminal may be used to assign information to be transmitted between two terminals to a block of the time slots within a frame, and reordering the time slot assignments within the frame using a permutation function, the permutation function being a function of frame count.
Abstract:
An electronic circuit for processing a digital signal may include a plurality of digital delay circuits, each configured to produce a delayed replica of the digital signal; a plurality of digital-to-analog converters, each configured to convert the digital signal or the delayed replica from one of the delay circuits into an analog signal; a plurality of analog gain circuits, each configured to adjust the analog signal from one of the digital-to-analog converters by a gain factor and each having an output; and an analog summer configured to sum the outputs of the analog gain circuits. The number of delay circuits and the magnitude of the delays and gains may be selected to cause the circuit to function as a band pass filter, a high pass filter, a low-pass filter, a notch filter, or any other type of filter. The circuit may be used in a broad variety of applications, including a transceiver (such as a subscriber station) and in ultra wideband applications.
Abstract:
A discrete time (DT) lowpass filter having various advantages is described. In an exemplary design, the DT lowpass filter includes a decimating DT filter (which may include a passive DT FIR filter and/or a passive DT IIR filter) and an active DT filter. The decimating DT filter receives a first DT signal at a first sample rate, filters and decimates the first DT signal by a factor of N, and provides a second DT signal at a second sample rate lower than the first sample rate. N may be greater than one. The active DT filter filters the second DT signal and provides a third DT signal at the second sample rate. A sampler samples a continuous time signal and provides the first DT signal. The sampler may further double the voltage of the first DT signal relative to the voltage of the continuous time signal.