Abstract:
An electrowetting display device includes a picture element having a first support plate and a second support plate. A surface of a second layer of the first support plate is non-planar and has a shape at least partly corresponding with a pattern of a first layer of the first support plate.
Abstract:
An electrowetting display device comprises a plurality of picture elements (2) having a first support plate (5) including a surface (68) and a second support plate. A space (10) of a picture element between the surface of the first support plate and the second support plate includes at least one first fluid and a second fluid immiscible with each other, the second fluid being electroconductive or polar. The first support plate includes an electrode (46) for applying an electric field in the picture element. It also includes a layer (44) arranged on a side of the electrode facing away from said space. The layer forms an electronic component (33) for applying a voltage to the electrode. The electrode comprises a height difference (86) corresponding to a thickness of the layer (44). The height difference causes an inhomogeneous electric field in the space, providing a preferred direction of motion of the first fluid on application of the electric field.
Abstract:
An electrowetting display device comprises a plurality of picture elements (2) having a first support plate (5) including a surface (68) and a second support plate. A space (10) of a picture element between the surface of the first support plate and the second support plate includes at least one first fluid and a second fluid immiscible with each other, the second fluid being electroconductive or polar. The first support plate includes an electrode (46) for applying an electric field in the picture element. It also includes a layer (44) arranged on a side of the electrode facing away from said space. The layer forms an electronic component (33) for applying a voltage to the electrode. The electrode comprises a height difference (86) corresponding to a thickness of the layer (44). The height difference causes an inhomogeneous electric field in the space, providing a preferred direction of motion of the first fluid on application of the electric field.
Abstract:
In one aspect, the invention provides an implantable device comprising a uniform mixture of components including degradable polymer, inorganic bone particulate either natural or synthetic, a drug, and a soluble microporagen. In some embodiments, the uniform mixture further includes a soluble polymer macroporagen. In some embodiments, the uniform mixture is coated with an immobilized outer porous layer comprising or consisting of synthetic or natural inorganic bone granules. In further aspects, the invention provides an implantable device comprising a composite core of degradable polymer, bone, and a drug, and a coating comprising or consisting of microporous bone overlayer covering the degradable composite core.
Abstract:
The invention relates to a method for treating a surface of a substrate, said method comprising applying a functional chemical onto the surface of the substrate for improving the adhesion of silicon to said substrate. The method further comprises applying said functional chemical in an amount of at least 5 mg/m2 onto the surface of the substrate by using a steam application beam to form a functional chemical layer on the substrate, which functional chemical comprises double bonds, silane hydride, or vinyl silane reactive groups, or oligomeric or polymeric hydrocarbon or polysiloxane compounds.
Abstract translation:本发明涉及一种用于处理基材表面的方法,所述方法包括将功能化学品涂覆到基材的表面上,以改善硅与所述基材的粘合性。 该方法还包括通过使用蒸汽施加束将至少5mg / m 2的量的至少5mg / m 2的所述功能化学品施加到基底上形成功能性化学层,该功能化学物质包含双键,硅烷氢化物, 或乙烯基硅烷反应性基团,或低聚或聚合烃或聚硅氧烷化合物。
Abstract:
An electrowetting display device comprises a plurality of picture elements (2) having a first support plate (5) including a surface (68) and a second support plate. A space (10) of a picture element between the surface of the first support plate and the second support plate includes at least one first fluid and a second fluid immiscible with each other, the second fluid being electroconductive or polar. The first support plate includes an electrode (46) for applying an electric field in the picture element. It also includes a layer (44) arranged on a side of the electrode facing away from said space. The layer forms an electronic component (33) for applying a voltage to the electrode. The electrode comprises a height difference (86) corresponding to a thickness of the layer (44). The height difference causes an inhomogeneous electric field in the space, providing a preferred direction of motion of the first fluid on application of the electric field.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung eines Bekleidungsstücks mit elastischen Randbereichen, insbesondere eines Unterbekleidungsstücks. Auf eine antihaftbeschichtete Trägerfolie (1) wird bereichsweise Flockkleber (2) aufgetragen, welcher mit Beflockungsmaterial (3) beflockt wird. Danach wird der beflockte Bereich mit einem Elastomer beschichtet und auf das noch unvernetzte Elastomer Textilmaterial (5) aufgelegt. Nach dem Trocknen des Elastomers wird das beflockte Textilmaterial (5) von der Trägerfolie (1) abgenommen, zugeschnitten und zu dem Bekleidungsstück vernäht, verschweißt oder verklebt.
Abstract:
Methods, compositions and systems for prolonging the lives of transportation surfaces, including pavement, runways, bridges and parking structures include chemically protecting the transportation surfaces. Chemical protection may be accompanied by physical alteration of the transportation surface, which may enhance one or both of a microtexture and a macrotexture of the transportation surface.
Abstract:
A porous substrate (12) is pretreated in a plasma field (20) and a functionalizing monomer is immediately flash-evaporated (22), deposited and cured (24) over the porous substrate in a vacuum-deposition chamber (10). By judiciously controlling the process so that the resulting polymer coating adheres to the surface of individual fibers in ultra-thin layers (approximately 0.02-3.O micrometers) that do not extend across the pores in the material, the porosity of the porous substrate (12) is essentially unaffected while the fibers and the final product acquire the desired functionality. The resulting polymer layer is also used to improve the adherence and durability of metallic and ceramic coatings.