Abstract:
Bei der vorliegenden Mehrsystem-Energieversorgungsanlage weist die den elektrischen Verbrauchern (21, 22, 30 bis 34) eines Reisezugwagens vorgeschaltete Transformatoranordnung (13), um insgesamt eine einfach gestaltete Schaltung zu erhalten, zwei Primärwicklungen auf, die über einen Wechselrichter (7 bis 9, 14, 15) mit vorzugsweise löschbaren Thyristorschaltern (14, 15) an einer Gleichrichteranordnung (6) angeschlossen sind, die wiederum an der Sammelschiene (ZS) des Reisezugwagens angeschlossen ist. Die derart gestaltete Energieversorgungsanlage kommt dank der beiden Primärwicklungen selbst bei allen vier europäischen Stromsystemen mit nur drei Umschaltschützen (10, 11, 12) aus. Um die Spannung der sekundärseitig mit der Transformatoranordnung (13) verbundenen Wagensammelschiene (ZS) auch bei einer Überspannung der Zugsammelschiene konstant zu halten, sind die Steuerelektroden der Tyristerschalter (14, 15) an je eine Zünd- und Löscheinrichtung (36 bzw. 37) angeschlossen, die zudem vorzugsweise eine Pulsweitenmodulationssteuerung aufweisen.
Abstract:
A control apparatus for an AC electric motor vehicle including a converter 3 that converts an AC voltage input from an AC overhead wire via a transformer 2 into a DC voltage, an inverter 4 that converts the DC voltage into an AC voltage, and a motor 6 that is driven and controlled by the inverter 4 includes: torque-command calculating units 11 and 12 that calculate a torque command value of the motor 6 and output the torque command value to the inverter 4; and a static inverter 7 that supplies electric power to a load mounted on the AC electric motor vehicle. When the AC voltage is not applied to the converter 3, the regenerative-brake-torque-command calculating unit 11 calculates a regenerative torque command value TRQ1 corresponding to power consumption of the static inverter 7, and the inverter 4 supplies, according to the regenerative torque command value TRQ1, regenerated power generated by the motor 6 to the static inverter 7.
Abstract:
A control apparatus for an AC electric motor vehicle including a converter 3 that converts an AC voltage input from an AC overhead wire via a transformer 2 into a DC voltage, an inverter 4 that converts the DC voltage into an AC voltage, and a motor 6 that is driven and controlled by the inverter 4 includes: torque-command calculating units 11 and 12 that calculate a torque command value of the motor 6 and output the torque command value to the inverter 4; and a static inverter 7 that supplies electric power to a load mounted on the AC electric motor vehicle. When the AC voltage is not applied to the converter 3, the regenerative-brake-torque-command calculating unit 11 calculates a regenerative torque command value TRQ1 corresponding to power consumption of the static inverter 7, and the inverter 4 supplies, according to the regenerative torque command value TRQ1, regenerated power generated by the motor 6 to the static inverter 7.
Abstract:
PROBLEM TO BE SOLVED: To provide a railway vehicle travelling in overhead cable voltage sections including AC and multiple DC configured to prevent the output of the vehicle from dropping at a lower voltage in a DC voltage section, lowering voltage for an auxiliary power supply device.SOLUTION: A vehicle drive device includes: a power collecting device P enabled to collect two DC with different voltages; an inverter 106 for controlling an AC motor 107; an inverter 105 for performing constant voltage-constant frequency control, by operating with a lower voltage than the inverter 106 controlling the AC motor 107; a booster-step down chopper 108 enabled to boost and step down voltage; and circuit switchover means S1-S6 enabled to selectively switching current paths. Further, when a high voltage is collected, the power that is stepped down by the booster-step down chopper 108 is supplied to the inverter 105 for performing the constant voltage-constant frequency control, whereas when a low voltage is collected, the power that is boosted by the booster-step down chopper 108 is supplied to the inverter 106 for driving the AC motor 107.
Abstract:
교류 가선으로부터 변압기(2)를 통하여 입력된 교류 전압을 직류 전압으로 변환하는 컨버터(3)와, 직류 전압을 교류 전압으로 변환하는 인버터(4)와, 인버터(4)에 의해 구동 및 제어되는 전동기(6)를 구비한 교류 전기차의 제어장치에 있어서, 전동기(6)의 토크 지령치를 연산하여 인버터(4)에 출력하는 토크 지령 연산부(11 및 12)와, 교류 전기차에 탑재되는 부하에 전력을 공급하는 보조 전원 장치(7)를 구비하고, 컨버터(3)에 교류 전압이 인가되지 않는 경우, 회생 브레이크 토크 지령 연산부(11)는 상기 전동기의 로터 주파수와 상기 보조 전원 장치의 입력 전류와 상기 보조 전원 장치의 입력 전압에 기초하여 보조 전원 장치(7)의 소비 전력에 따른 회생 토크 지령치 TRQ1를 연산하고, 인버터(4)는 회생 토크 지령치 TRQ1에 따라서, 전동기(6)가 발생한 회생 전력을 보조 전원 장치(7)에 공급한다.
Abstract:
Die Erfindung betrifft ein Schienenfahrzeug (1) mit einem Energieversorgungssystem zur Speisung von elektrischen Verbrauchern, wobei das Schienenfahrzeug (1) Reisezugwagen (2) aufweist, wobei das Schienenfahrzeug (1) eine Zugsammelschiene (3) aufweist. Zur Verbesserung des Energieversorgungssystems des Schienenfahrzeugs (1) wird vorgeschlagen, dass das Schienenfahrzeug (1) eine DC-Versorgungssammelschiene (4) und eine 3AC-Sammelschiene (5) aufweist, wobei die DC-Versorgungssammelschiene (4) und die 3AC-Sammelschiene (5) sich über mindestens zwei der Reisezugwagen (2) erstrecken, wobei die DC-Versorgungssammelschiene (4) über eine zentrale Energieversorgungseinheit (11) mit der Zugsammelschiene (3) verbunden ist, wobei die zentrale Energieversorgungseinheit (11) in einem ersten Reisezugwagen (21) der mindestens zwei Reisezugwagen (2), über die sich die DC-Versorgungssammelschiene (4) und die 3AC-Sammelschiene (5) erstrecken, angeordnet ist, wobei in mindestens einem zweiten Reisezugwagen (22) der mindestens zwei Reisezugwagen (2) jeweils eine dezentraler Energieversorgungseinheit (12) angeordnet ist, wobei die dezentrale Energieversorgungseinheit (12) mit der DC-Versorgungssammelschiene (4) und der 3AC-Sammelschiene (5) verbunden ist. Die Erfindung betrifft weiter ein Verfahren zum Betreiben des Energieversorgungssystems eines solchen Schienenfahrzeugs (1).
Abstract:
The switching indicator (10) according to the invention of a grounded power cable of a vehicle (100) has an indicator circuit (11 ), a direct voltage regulator (12) for generating direct voltage and an amplifier (13). The indicator circuit (11 ) is configured to supply base current of a transistor (V4) belonging to the amplifier (13) via a high-impedance connection at least to the neutral conductor (2) of the power cable, when the power cable is connected to the electrical network. The passage of the base current of the transistor (V4) through the power cable to the grounding point of the electrical network causes a change in the operative state of the transistor (V4). The change in the transistor's operative state is configured to indicate whether the power cable is connected to the alternating voltage network or not. Instead of a transistor amplifier, either an operational amplifier or a comparator can also be utilized.
Abstract:
A control apparatus for an AC electric motor vehicle including a converter 3 that converts an AC voltage input from an AC overhead wire via a transformer 2 into a DC voltage, an inverter 4 that converts the DC voltage into an AC voltage, and a motor 6 that is driven and controlled by the inverter 4 includes: torque-command calculating units 11 and 12 that calculate a torque command value of the motor 6 and output the torque command value to the inverter 4; and a static inverter 7 that supplies electric power to a load mounted on the AC electric motor vehicle. When the AC voltage is not applied to the converter 3, the regenerative-brake-torque-command calculating unit 11 calculates a regenerative torque command value TRQ1 corresponding to power consumption of the static inverter 7, and the inverter 4 supplies, according to the regenerative torque command value TRQ1, regenerated power generated by the motor 6 to the static inverter 7.