Abstract:
Wind energy systems, such as an Airborne Wind Turbine ("AWT"), may be used to facilitate conversion of kinetic energy to electrical energy. An AWT may include an aerial vehicle that flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station via a tether. As a result of continuous circular flights paths, the tether may rotate continuously in one direction. Thus, it may be desirable to have a cable management apparatus that allows for tether rotation and helps reduce strain on the tether.
Abstract:
방법은항공기를측풍비행배향으로배향되어있으면서테더구면상의제1 닫힌경로를따라진행하도록조작하는단계를포함할수 있다. 테더는제1 단부에서항공기에연결될수 있고제2 단부에서지상국에연결될수 있다. 게다가, 테더구면은테더의길이에대응하는반경을가질수 있다. 본방법은항공기가측풍비행배향으로있는동안, 항공기의속력이감소되도록, 항공기를테더구면상의제2 닫힌경로를따라진행하도록조작하는단계를추가로포함할수 있다. 그리고본 방법은항공기의속력이감소된후에또는감소되는동안에, 항공기를측풍비행배향으로있으면서제2 닫힌경로를따라진행하는것으로부터제자리비행배향으로전환시키는단계를포함할수 있다.
Abstract:
Die Erfindung betriff unter anderem ein Fluggerät (10), umfassend wenigstens einen elektromotorischen Antrieb (11a, 11b) und eine Steuerung (12), mit der das Fluggerät eine eingestellte Flugposition dauerhaft bewahren kann, wobei das Fluggerät über eine Kabelanordnung (16) mit einer Bodenstation (19) verbindbar ist, und wobei die Kabelanordnung wenigstens zwei elektrische Leiter (17a, 17b) zur Bereitstellung einer Spannungsversorgung für den Antrieb umfasst, sowie ein Glasfaserkabel (18) zur Übermittlung von Daten und/oder Signalen.
Abstract:
The solution proposed refers to a flight control unit (6) for tied models (1) (copters; UAV - Unmanned Aerial Vehicle) that provides for direct flight control using mechanical or electronic guiding link (2) between the guiding point (3) and the model (1). The mechanical execution of the guiding point (3) and the guiding link (2) can consist of a whipcord, wire, electrical cable etc.; the electronic type of guiding link (2) is then representing the line with an acoustic or electromagnetic signal, a light beam etc. The unit may be completed with data communication to specify the position coordinates of the guiding point (3) and the model (1) in more detail. The solution proposed provides for fully automated navigation of the model (1) to a required position in reference of the guiding point (3), without imposing higher level of skills on the pilot (4) or the necessity to know the movement path trajectory in advance as it is the case in wireless remote control of the model (1), or its flight programming.
Abstract:
A method and an apparatus for capturing a flying object (5) are revealed. The apparatus includes a generally linear fixture (2), such as a length of rope; a means for suspending (1) the fixture (2) across the path of the flying object (5); and one or more hooks (19) on the flying object (5). The method involves suspending the fixture (2) such that its orientation includes a component normal to the flying object's line of approach; striking the fixture (2) with the flying object (5), which causes the flying object (5) to rotate and decelerate, while the fixture (2) slides along a surface of the flying object (5) into a hook (19); capturing the fixture (2) in the hook (19); and retrieving the flying object (5) from the fixure (2).
Abstract:
A robotic or remotely controlled flying platform (10) with reduced drag stabilizing control apparatus constructed having an air duct (12) with an air intake (14) on the top and an exhaust (16) at the bottom, containing supported therein a clockwise rotating fan (22) and a counter-clockwise rotating fan (24). Directly below the perimeter of the air duct exhaust are mounted a plurality of trough shaped air deflection assemblies (32) each including a rotatably adjustable half trough (44) for selectively scooping a portion of the drive air, and a stationary adjacent half trough (36) for receiving the scooped drive air and redirecting it outward and upward from the air duct. A centrally positioned plate (112) has a plurality of rods (106), each pivotably connected between the plate (74) and a corresponding lever associated with each of the adjustable half troughs (44) so as to couple the adjustable half trough (44) in or out of the drive air steam according to the position of the plate (74), thereby providing control over the pitch and roll of the flying platform. The plate is driven by first and second motors responding to input control signals. The control signals also direct the yaw of the flying platform by selectively providing independent speed control to each of the clockwise and counter clockwise fan motors resulting in duct rotation in a clockwise or counter clockwise direction accordingly.
Abstract:
A flying platform (10), propelled by at least one ducted fan (11) causing a vertically downwardly directed airstream in and through a cylindrical duct (12). A vane system in the duct (12) has two mutually perpendicular pairs (31-34) of diametrically opposite first vanes, each extending in from the duct rim toward the center of the duct. Each pair of first vanes provides a pair of generally vertical walls parallel to a diametral line across the duct, and they define duct passages between the pairs of vanes and define quadrants between adjacent pairs. Each first vane has an upper, fixed, rigid portion and a variable camber flap (45, 46) depending therefrom. A first servomotor with linkages vary the camber of each pair of flaps (45, 46), so that the camber of the flaps (45, 46) of each pair is at all times the same amount but in opposite directions. Preferably, there are also four second vanes (41-44), one bisecting each quadrant, and a symmetric pair of spoilers (75-82) is mounted on each second vane (41-44). Each pair of spoilers (75-82) is independently movable, as a pair continuously between a position substantially blocking airflow through the outer portion of said quadrant and a position permitting substantially full airflow therethrough. A second servomotor with linkages symmetrically varies the position of its spoilers (75-82). There may be a radio receiver responsive to remote control signals for actuating each servomotor and its linkages.