Abstract:
An apparatus for forming an array of deposits on a substrate is disclosed. The apparatus may include a stencil capable of releasable attached to the substrate and having an array of openings and at least one alignment mark. The apparatus may further include a high throughput deposition printer aligned with the stencil to form an array of deposits on the substrate. The array of deposits may be aligned with the array of openings through the at least one alignment mark and an optional alignment device. Methods of manufacturing the stencil and using it to generate multiplexed or combinatorial arrays are also disclosed.
Abstract:
Micro fluidic devices comprising three dimensional elements fabricated onto a substrate using thick film printing technology, e.g., screen printing, wherein the three dimensional elements possess both structural and functional properties.
Abstract:
The invention pertains to a method for the production of ID, 2D and/or 3D depositions (37, 38) from a nano-particle loaded liquid (34, 35) by means of a capillary (2) for holding the liquid with a backside section (16) and a smaller diameter tip section (15) located below said backside section (16), wherein the inner diameter the essentially cylindrical tubular part of the tip section (15) is in the range of 50nm - lμm, wherein the capillary (2) is provided with an outer electrode (5) on the outside of or integrated into the wall of the capillary (2) but isolated with respect of the liquid in the capillary (2) and wherein there is a counter electrode (1) in or on a substrate, including the steps of: i) keeping the outer electrode (5) and the counter electrode (6) on an essentially equal potential; ii) establishing a potential difference between the outer electrode (5) and the counter electrode (6) leading to the ejection of a drop (13) or stream from the tip (3) of the tip section (15) of the capillary (2); iii) movement of the opening (32) of the tip section (15) along a pathway as a function of time, wherein said nano-particles are non-charged.
Abstract:
본 발명은 (a) 전도성 잉크(conductive ink) 및 잉크젯 프린팅을 이용하여 기판에 전극 패턴을 인쇄하는 단계; (b) 상기 인쇄된 전극 패턴을 절단하는 단계; 및 (c) 상기 절단된 전극 패턴을 조립하여 모듈형 마이크로유체 칩을 제작하는 단계를 포함하는 모듈형 마이크로유체 칩의 제작방법에 관한 것이다. 본 발명의 방법은 종래의 패터닝제 또는 패터닝 장치를 이용하는 인쇄 회로 기판 제작 방식과 달리 잉크젯 프린터를 이용한 간편한 인쇄과정을 거칠 뿐이며, 이로써 패터닝 방법을 간소화하고 전극 패턴의 조립 형태에 따라 다양한 종류의 칩을 제작할 수 있고, 따라서 본 발명의 방법을 이용하여 저가의 경제적이고 활용성 높은 마이크로유체 칩을 제공할 수 있다.
Abstract:
A method of patterning nanostructures comprising printing an ink comprising the nanostructures onto a solvent-extracting first surface such that a pattern of nanostructures is formed on the first surface.
Abstract:
A process for the production of a device having a surface microstructure of wells or channels, comprises one or more steps of screen-printing the microstructure as a curable material onto a plastics substrate, and curing the material. Such a device may also be obtained by applying onto a substrate a material that is polymerisable or depolymerisable by irradiation, applying a negative or positive photoresist respectively, irradiating the structure and removing the unpolymerised or depolymerised material.
Abstract:
Embodiments of the present disclosure digital microfluidic arrays that may be fabricated by a printing method, whereby digital microfluidic electrodes arrays are printed, via a printing method such as inkjet printing, onto a suitable substrate. In some embodiments, a substrate and/or ink is prepared or modified to support the printing of electrode arrays, such as via changes to the surface energy. In some embodiments, porous and/or fibrous substrates are prepared by the addition of a barrier layer, or, for example, by the addition or infiltration of a suitable material to render the surface capable of supporting printed electrodes. Various example embodiments involving hybrid devices formed by the printing of digital microfluidic arrays onto a substrate having a hydrophilic layer are disclosed.
Abstract:
A method for the production of nano- or microscaled ID, 2D and/or 3D depositions from an solution (6), by means of a liquid reservoir (2) for holding the ink with an outer diameter (3,D) of at least 50 nm, is proposed, wherein there is provided an electrode (7,8 or 9) in contact with said ink (6) in said capillary (2), and wherein there is a counter electrode in and/or on and/or below and/or above a substrate (15) onto which the depositions are to be produced, including the steps of: i) keeping the electrode (7, 8, 9) and the counter electrode (15, 18) on an essentially equal potential; ii) establishing a potential difference between the electrode (7, 8, 9) and the counter electrode (15, 18) leading to the growth of an ink meniscus (1) at the nozzle (3) and to the ejection of droplets (13) at this meniscus with a homogeneous size smaller than the meniscus size (11) at a homogenous ejection frequency; keeping the voltage applied while the continuously dried droplets leave behind the dispersed material which leads a structure to emerge with essentially the same diameter as a single droplet, wherein the distance between the substrate (1) and the nozzle (3) is smaller than or equal to 20 times the meniscus diameter at least at the moment of nano-droplet ejection (12); wherein the conductivity of the ink (6) is high enough to stabilize the liquid meniscus during droplet ejection;
Abstract:
A system and method for manufacturing a display device having an electrically connected front plate and back plate are disclosed. In one embodiment, the method comprises printing conductive raised contours onto a non-conductive back plate, aligning the back plate with a non-conductive front plate such that the raised contours align with conductive routings on the front plate to electrically connect the raised contours and the routings, and sealing the back plate and the front plate.
Abstract:
A switch and a relay include a contact with a smooth contacting surface. A side surface of a fixed contact faces a side surface of a movable contact. The fixed contact has an insulating layer and a base layer stacked on a fixed contact substrate, and a first conductive layer formed thereon through electrolytic plating. The side surface of the first conductive layer that faces the movable contact becomes the fixed contact (contacting surface). The movable contact has an insulating layer and a base layer stacked on the movable contact substrate, and a movable contact formed thereon through electrolytic plating. A side surface of a second conductive layer that faces the fixed contact becomes the movable contact (contacting surface). The fixed contact and the movable contact have surfaces that contact the side surfaces of the mold portion when growing the first and second conductive layers through electrolytic plating.