Abstract:
Magnetic tweezers have two jaws formed by thin magnetic films connected together via a hinge. The magnetic tweezers include a nanoparticle formed by a stack of thin magnetic films. A process for fabricating the magnetic tweezers by techniques used in the fabrication of microelectronic components is presented.
Abstract:
A microparticle includes an oblong flexible tail able to propel the microparticle in a solution along a trajectory using beats transverse to the trajectory, the tail including at least one magnetic element such that the magnetic element causes beats of the tail under the action of an external alternating magnetic field non-collinear with the trajectory and a head mechanically connected to a proximal end of the tail. The microparticle includes at least one layer of material formed from one piece and including the tail and the head, the dimensions and/or shape of the head being selected such that the beats of the proximal end of the tail are limited with respect to the beats of the distal end of the tail and such that the head does not perform a complete revolution around an axis parallel to the trajectory under the effect of the external alternating magnetic field.
Abstract:
Magnetic tweezers have two jaws formed by thin magnetic films connected together via a hinge. The magnetic tweezers include a nanoparticle formed by a stack of thin magnetic films. A process for fabricating the magnetic tweezers by techniques used in the fabrication of microelectronic components is presented.
Abstract:
Methods comprising providing a pre-patterned substrate having an array of thick walls, depositing a conforming layer on the pre-patterned substrate, etching the conforming layer from the top of the thick walls and the space between the walls, and etching the thick walls while leaving thin walls of conforming layer.
Abstract:
A thin film device and fabrication method providing optimum tear resistance. A thin film layer is formed with a first and second of rows of holes. The holes in each row are spaced-apart along an axis which extends along an edge of the layer. The holes in one row are in overlapping relationship with adjacent holes in the other row. The holes have a diameter which is sufficiently large so that an imaginary line extending perpendicular from any location along the edge will intersect at least one hole, thus preventing further propagation of any tears or cracks which start from the edge.
Abstract:
A method of producing particles includes providing a substrate structure that comprises a solid substrate; forming a target structure on said substrate structure, said target structure comprising a radiation-reactive material; forming a spatially patterned beam of radiation using a patterned mask; exposing at least a portion of the target structure to the spatially patterned beam of radiation to which the radiation-reactive material reacts while leaving other portions of the target structure unexposed to the radiation; removing substantially all of one of the exposed or the unexposed patterned portions of the target structure to provide a plurality of non-contiguous structures that include at least a portion of the radiation-reactive material; and separating the plurality of non-contiguous structures comprising the radiation-reactive material from the substrate structure into a fluid material. Each non-contiguous structure of the radiation-reactive material provides at least a portion of a separate particle after the separation.
Abstract:
A thin film device and fabrication method providing optimum tear resistance. A thin film layer is formed with a first and second of rows of holes. The holes in each row are spaced-apart along an axis which extends along an edge of the layer. The holes in one row are in overlapping relationship with adjacent holes in the other row. The holes have a diameter which is sufficiently large so that an imaginary line extending perpendicular from any location along the edge will intersect at least one hole, thus preventing further propagation of any tears or cracks which start from the edge.
Abstract:
The present invention relates to a microparticle (2) comprising: at least one oblong flexible tail (6), capable of propelling said microparticle (2) in a solution along a path by flapping movements transverse to the path, said tail being provided with at least one magnetic element for this purpose, such that said magnetic element causes the flapping movements of said tail (6) by means of an external alternating magnetic field that is non-collinear with the path; and a head (4) mechanically connected to the proximal end of the tail. The microparticle (2) comprises at least one layer of a material made of a single piece and including said tail (6) and said head (4), the size and/or shape of said head (4) being selected such that the flapping movements of the proximal end of said tail (6) are limited relative to the flapping movements of the distal end of the tail (6), and such that said head (4) does not perform a complete revolution about an axis parallel to the path when exposed to the external alternating magnetic field.