Abstract:
A novel system and method for purification and disinfection of water containing contaminates is provided. The system includes an aeration column, a first intermediate tank, a first mechanical filter, an electric discharge device, a second intermediate tank, a second mechanical filter and a sorption filter. The water is firstly aerated by continuous mixing the water with air and ozone-air mixture. The water obtained after the aeration is treated with coagulant materials in a medium of the ozone-air mixture. Further, the water is filtered from coagulated particles. Thereafter, the water is treated by electric discharges in an air medium. The water is then treated again with coagulant materials. Finally, the water is filtered from remaining contaminates.
Abstract:
An apparatus and method for generating ozone is provided. An ozone generator comprises a substantially transparent element having ozone-generating means mounted on an inner element area and an outer element area. An enclosure is positioned over the element, and an oxygen-containing gas is directed through the inner element area, creating ozone from a portion of the oxygen-containing gas. The ozone and oxygen-containing gas is then redirected over the outer element area, so that the oxygen-containing gas is at least twice exposed to the ozone-generating means, thereby generating additional ozone.
Abstract:
PURPOSE: Provided is an ozone generator having a small size and capable of generating ozone at low cost with high yields, by using plasma generated by using microwave. CONSTITUTION: The ozone generator comprises a molecular exciting apparatus(300) for exciting oxygen molecular in a gas by photochemical reaction, a molecular dissociating apparatus(400) for dissociating molecular in oxygen gas introduced into a resonator to elements, and a molecular combining apparatus(500) for combining excited oxygen molecular from the molecular exciting apparatus(300) and the dissociated oxygen elements from the molecular dissociating apparatus(400) to make ozone.
Abstract:
하나의 오존 농축 챔버 내에, 오존화 산소 가스로부터 오존을 선택적으로 결로와 산소 가스를 선택적으로 투과시켜 배출할 수 있도록 한 냉각 온도 범위의 부분과 결로한 오존을 증기화할 수 있는 온도 범위의 부분을 형성하고, 결로한 오존을 유체의 흐름이나 중력 작용을 이용하여, 상기 결로한 오존을 증기화할 수 있는 부분으로 이동시키고, 증기화시킴으로써, 오존화 산소 가스를 보다 고농도화시킬 수 있다. 오존 농축 챔버(11, 12) 내에 채워진 결로·증기화 입자재(13)는, 구상이며, 또한 측면이 다면의 평면을 갖는 특수한 형상으로 하는 것과 오존 가스중의 산소 가스를 선택적으로 투과할 수 있는 산소 투과막(130) 구성으로 되어 있다. 가스 농축, 희석
Abstract:
An ozone replenishment system including a housing assembly, an electrolysis assembly, a power assembly, and an ozone assembly is disclosed herein. The housing assembly includes a hollow tower. The power assembly includes a battery. The electrolysis assembly includes a reservoir filled with an electrolyte. The electrolysis assembly also includes an anode electrode a cathode electrode disposed into the reservoir. The anode electrode and the cathode electrode are connected to the battery. The electrolysis assembly produces oxygen and dihydrogen. The oxygen is captured by the hollow tower. The ozone assembly includes a fan that allows the oxygen to cross the hollow tower. The ozone assembly further includes a plurality of ultraviolet lights to convert the oxygen into ozone. The ozone is replenishment into the atmosphere.
Abstract:
An oxygen allotrope generator having a tube with an electrically grounded outer surface and an electrically positive inner surface. A plurality of corona reaction plates are spaced along the interior of the tube, the plates being longitudinally inter-connected by wires and being in electrical connection with the electrically positive inner surface of the tube. An outer jacket encloses the tube and provides a second linear pass for partially ozonated gas to flow in the generator. An alternative embodiment includes external distributed ground connections at the locations of the corona reaction.
Abstract:
One ozone concentrating chamber is provided therein with a part of a cooling temperature range where ozone can be selectively condensed or an oxygen gas can be selectively removed by transmission from an ozonized oxygen gas, and a part of a temperature range where condensed ozone can be vaporized, and condensed ozone is vaporized by moving condensed ozone with flow of a fluid or by gravitation to the part where condensed ozone can be vaporized, whereby the ozonized oxygen gas can be increased in concentration. Such a constitution is provided that a particle material 13 for condensation and vaporization filled in the ozone concentrating chambers 11 and 12 has a spherical shape of a special shape with multifaceted planes on side surfaces, or an oxygen transmission membrane 130 capable of selectively transmitting an oxygen gas in an ozone gas is provided.
Abstract:
One ozone concentrating chamber is provided therein with a part of a cooling temperature range where ozone can be selectively condensed or an oxygen gas can be selectively removed by transmission from an ozonized oxygen gas, and a part of a temperature range where condensed ozone can be vaporized, and condensed ozone is vaporized by moving condensed ozone with flow of a fluid or by gravitation to the part where condensed ozone can be vaporized, whereby the ozonized oxygen gas can be increased in concentration. Such a constitution is provided that a particle material 13 for condensation and vaporization filled in the ozone concentrating chambers 11 and 12 has a spherical shape of a special shape with multifaceted planes on side surfaces, or an oxygen transmission membrane 130 capable of selectively transmitting an oxygen gas in an ozone gas is provided.
Abstract:
In accordance with at least one exemplary embodiment, a syringe, method and system for delivering a therapeutic amount of ozone are disclosed. An exemplary syringe can have a gas chamber and one or more electrodes. A portion of at least one electrode can be within the gas chamber. Alternatively, singularly or in conjunction, one or both electrodes can be attached to the outside of an exemplary syringe. One or more electrical contact points can be outside the gas chamber. Each electrical contact point can be connected to an electrode. Oxygen gas can provided within the gas chamber of the exemplary syringe. A medical ozone generator can be connected to the syringe via the electrical contact points. Corona discharge can be effectuated via the electrodes, which can result in an amount of ozone gas can being produced from the oxygen gas.
Abstract:
A reactor produces a surface corona for emitting UV light and for the production of ozone by passing air or oxygen through the surface corona. The emitted UV light activates a photocatalyst coated on a surface facing a surface with embedded electrodes which generate the surface corona. The photocatalyst is a thin film of nanoparticle TiO2 with primary particle size of 0.02 to 0.2 μm was deposited on a substrate by a flame aerosol method. The method combines ozonation and photocatalysis to provide effective and efficient oxidation of alcohols and hydrocarbons to value added products. The method can also be used for air and water cleaning.