Abstract:
An expansion tank includes two half-shells coupled to each other, an inner flexible membrane suited to divide the inside of the casing in two compartments, a counter cap made of a thermoplastic material, a pipe fitting suited to provide a connection and having a first tubular portion and a second portion in the shape of a flat ring that are made of a thermoplastic material, wherein the second ring-shaped portion is joined to the counter cap at the level of an opening in the tank.
Abstract:
The present invention is a distributed piston elastomeric accumulator which stores energy when its elastomeric member stretches from its original length in response to the flow of a pressurized fluid. The stored energy is returned when the fluid flow is reversed and the accumulator discharges the fluid as its elastomeric member returns to its original length and moves the piston to its initial position. At least one part of the novelty of the invention is that the accumulator is not subject to radial strain gradients and the accumulator allows for precise pressure and linear position measurements. Accordingly, the invention allows for optimization of the energy strain storage capacity of a given elastomer.
Abstract:
An exemplary system for supplying hydraulic pressure to an operational device includes two or more pressure supply devices connected in a pod, the pressure supply devices including an elongated body having an internal bore extending axially from a first end to a discharge end; a gas generator operationally connected at the first end; a piston movably disposed in the internal bore; a hydraulic fluid disposed in the internal bore between the piston and the discharge end, wherein a portion of the hydraulic fluid is exhausted under pressure through a discharge port in response to activation of the gas generator; the operational device in hydraulic connection with the discharge port to receive the exhausted hydraulic fluid.
Abstract:
The present invention is a distributed piston elastomeric accumulator which stores energy when its elastomeric member stretches from its original length in response to the flow of a pressurized fluid. The stored energy is returned when the fluid flow is reversed and the accumulator discharges the fluid as its elastomeric member returns to its original length and moves the piston to its initial position. At least one part of the novelty of the invention is that the accumulator is not subject to radial strain gradients and the accumulator allows for precise pressure and linear position measurements. Accordingly, the invention allows for optimization of the energy strain storage capacity of a given elastomer.
Abstract:
The present invention provides an active, electrically powered hydraulic fluid accumulator. The accumulator includes an electric motor having its output coupled to a mechanical rotation to linear translation transducer such as a lead screw, ball spline or similar device. The output of the mechanical transducer is coupled to a piston disposed within an accumulator cylinder. The accumulator cylinder preferably communicates with a pair of inlet and outlet check valves disposed in hydraulic supply and feed lines from the system pump or sump and to the system, respectively.
Abstract:
A bellows is comprised of a unitary body formed of relatively thin annular walls, open at one end and closed at the other. The walls are constructed and arranged as a spiral groove, whereby the bellows can be fabricated from plastic by injection molding in a relatively inexpensive fashion. The bellows can be formed of two layers joined to one another, a backup layer formed of metal or plastic and a protective layer formed of plastic such as PFA and PVDF.
Abstract:
A pressure vessel (1) includes a pair of shells (2,3) which are suitably joined together. A flexible diaphragm (12) is disposed within the vessel and sealingly mounted to the vessel walls adjacent the joint. The lower shell wall (5) has a radially outwardly extending offset (17) and bulge (19) forming an interior groove (20) for receiving a projection (16) on the diaphragm. The bulge merges into an inwardly tapered wall (21) which in turn merges into an axial cylindrical wall (23) having a terminus edge (24). The upper shell wall (4) has a pair of spaced radially inwardly extending offsets (25,28). The upper (25) of said pair of offsets provides an abutment (26) receiving the terminus edge (24) of the lower shell. An axial cylindrical wall (29) between the pair of inward offsets press-fittingly engages the upper edge portion (23) of the lower shell. A further cylindrical wall (30) extends downwardly from the lower (28) of said pair of offsets and compressingly engages the diaphragm (12) so that it tends to ride down the inclined ramp-like tapered wall (21) and tightens into the groove (20) during assembly. The further cylindrical wall (30) merges into an inwardly tapered protective lip (32).
Abstract:
A valve for controlling an opening for the passage of fluid into and out of a pressure accumulator has a valve member, which, by the elastically expanding membrane of the pressure accumulator, can be brought against the force of a spring to a closed position. An orifice plate located in the valve housing creates a pressure difference to opposite sides of the plate, and this pressure difference is directed to opposite sides of a piston operably connected to the valve member to thereby bias the latter to the open position during outflow of fluid from the pressure accumulator, to thus prevent a premature movement of the valve member to the closed position.
Abstract:
Apparatus for attaching internal parts to the interior of a pressure vessel having an inner lining of uncured rubber includes a rigid fastener, preferably an internally threaded nut, rigidly secured over an opening through the wall of the vessel and the rubber lining. A rigid bolt is threaded through the nut from the inside of the vessel so that a lateral shoulder on the bolt is tightened against the rubber lining. A layer of uncured rubber is mounted over the shoulder, and the layer is cured when the inner lining is being cured to embed the shoulder in the rubber and seal the bolt against leakage. Internal parts are attached to the portion of the bolt inside the vessel, and the structural load applied to the bolt by the internal parts is transmitted to the wall of the vessel through the rigid bolt and nut.