Abstract:
Die Erfindung betrifft einen Differentialantrieb von Antriebsachsen und von FahrzeugRädern. Das Differentialgetriebe weist Abtriebswellen auf, die wenigstens durch ein Ausgleichsrad miteinander kinematisch gekoppelt sind. Das Ausgleichsrad ist mit dem Gehäuse mittels wenigstens eines Zwischenstücks verbunden, welches sich im Gehäuse koaxial mit der Geometrieachse des Ausgleichsrads dreht, wobei die Paarungsflächen des Ausgleichsrads und des Zwischenstücks in Bezug auf die Geometrieachse des Ausgleichsrads versetzt sind. Die Erfindung ermöglicht es, die Konstruktion des selbst sperrenden Differentialgetriebes zu vereinfachen.
Abstract:
A limited slip differential gear mechanism, particularly for use with automotive vehicle axles, comprising differential side gears connected drivably to each of two driving axles for the vehicle. A pair of pressure plates splined to the carrier define a pair of opposed ramps. They are engaged by differential pinions carried by a pinion shaft. The pinions engage each of the two side gears. A friction clutch assembly is situated adjacent each side gear. The pressure plates transfer an axial component of the thrust force created on the ramp surfaces as torque is transmitted through the pinions and through each side gear to each of two axle shafts. Each friction clutch assembly includes friction disks carried by the side gears and by the carrier so that a bias torque is established as one axle shaft overspeeds the other. A hydrostatic pump has one pump member connected to the carrier and another connected to one of the axle shafts. The hydrostatic pump creates a differential speed-sensitive bias which complements the torque-sensitive bias developed by the ramps.
Abstract:
PCT No. PCT/AU92/00208 Sec. 371 Date Dec. 16, 1993 Sec. 102(e) Date Dec. 16, 1993 PCT Filed May 7, 1992 PCT Pub. No. WO92/19888 PCT Pub. Date Nov. 12, 1992.A torque proportioning differential mechanism (1) for transmitting drive to at least two wheels of a vehicle. The differential includes a carrier (2) adapted to be rotatably driven about a first axis (3) and a plurality of inner peripherally spaced pinion-locating formations (6) defining respective inwardly directed carrier thrust surfaces (7). A pair of spaced apart bevel side gears (4,5) are respectively adapted for connection to the wheels and supported for rotation about a common axis (3) fixed with respect to the carrier. A plurality of peripherally spaced floating shaftless bevel pinions (8) are disposed in meshing engagement with both the side gears (4,5). Each pinion defines a complementary outer pinion thrust surface (9) nestingly disposed closely adjacent a respective one of the locating formations. Under normal driving conditions when both wheels have substantial traction, the pinions are permitted to rotate with minimal frictional resistance in response to relative rotation of the side gears (4,5). Under conditions of wheel slip, however, a separating force component tends to urge the pinions away from the side gears and into engagement with the respective locating formations to create a temporary frictional reaction force between the carrier (2) and the outer pinion thrust surfaces (9). The frictional reaction force resists rotation of the pinions relative to the carrier and thereby provides temporary torque bias between the side gears (4,5).
Abstract:
The present invention relates to a differential gear equipped with a selectively controllable locking device. Said locking device is self energizing, i.e. it utilizes the differentiation energy (i.e. the possible torque imbalance) to self- lock on its own accord. The control signal is therefore not needed to lock the locking device but rather to selectively control it not to lock itself. Said control signal is designed to, separately for each of the two possible differentiation directions, allow or not allow the locking device to lock. In this way the differential gear will get four different working modes. Said working modes are respectively; open regardless of differentiation direction; open in one differentiation direction but self-locking in the other direction; open in the other direction but self-locking in the first one; self-locking regardless of differentiation direction. A control unit is supplied with sensor data of the present "driving situation". Said control unit has a steering strategy. With the right steering strategy it can regulate the control signal so as to admit the differential gear to equalize the torque at each output shaft for as long as possible but still to practically eliminate the risk of one wheel spin.