Abstract:
There is provided a photoelectric switch capable of accurately detecting even such a workpiece where a tint changes within the same workpiece, while preventing erroneous detection. The photoelectric switch includes: a light projecting unit; a light receiving unit; a coincidence degree calculating unit for comparing the acquired color information with a reference color to calculate a coincidence degree of both of the color information. When the color information is newly acquired, a detection signal generating unit compares, with a detection determination threshold, the highest coincidence degree of coincidence degrees calculated by respectively comparing the color information newly acquired, with the two or more reference colors, to perform workpiece determination.
Abstract:
A spectrometer configurable for field analyses of chemical properties of a material is provided. The spectrometer includes: at least one sensor adapted for providing Fourier transform infrared spectroscopy (FTIR) surveillance and at least another sensor for providing Raman spectroscopy surveillance. The spectrometer can be provided with a user accessible instruction set for modifying a sampling configuration of the spectrometer. A method of determining the most likely composition of a sample by at least two technologies using the spectrometer is also provided.
Abstract:
A spectrometer for identifying a mixture is provided. The spectrometer includes a detector configured to generate a signal based on an interaction of light with a sample of the mixture, and a memory device having a library and a correlation matrix stored therein, wherein the library includes a plurality of spectra, each spectrum associated with a respective compound, and wherein the correlation matrix includes a correlation between each possible pair of spectra in the library. The spectrometer further includes a processor coupled to the memory device and configured to determine a spectrum of the mixture based on the signal generated by the detector, calculate a correlation vector that includes a correlation between the mixture spectrum and each spectrum in the library, and identify the mixture based on the correlation matrix and the correlation vector.
Abstract:
Disclosed is a movable body spectrum measuring apparatus, which is capable of discriminating an object being measured highly precisely by the photographic data regarding a spectrum sensor and is capable of processing the photographic data in real time. The movable body spectrum measuring apparatus discriminates the object being measured based on the spectrum data relating to the observation light detected by a spectrum sensor. The movable body spectrum measuring apparatus comprises a dictionary data storing unit for storing the spectrum data containing the wavelength information and the light intensity information of the object being measured, and a limitation information storing unit for storing limitation information to regulate the wavelength information into partial wavelength information. The movable body spectrum measuring apparatus further comprises a discrimination level setting unit for setting selectively the limitation information corresponding to the discrimination level required of the object being measured, a restricting unit for restricting the spectrum data regarding the observation light to the spectrum data composed exclusively of the wavelength information limited by the limitation information, and a discrimination unit for discriminating the object being measured based on the comparison between the restricted spectrum data and the spectrum data regarding the dictionary data storing unit.
Abstract:
A system and a method for setting a fluorescence spectrum measurement system for microscopy is disclosed. Using illuminating light (3) from at least one laser that emits light of one wavelength, a continuous wavelength region is generated. Dyes are stored, with the pertinent excitation and emission spectra, in a database of a computer system (23). For each dye present in the specimen (15), a band of the illuminating light (3) and a band of the detected light (17) are calculated, the excitation and emission spectra read out from the database being employed. Setting of the calculated band in the illuminating light and in the detected light is performed on the basis of the calculation. Lastly, data acquisition is accomplished with the spectral microscope (100).
Abstract:
The invention relates to a spectrometry installation comprising an inlet, optical fiber means suitable for receiving an inlet beam and delivering a spectrally dispersed image of the beam which image is limited to a selected spectral band, a multi-channel detection module receiving said spectral image, and processor means. The optical filter means are provided with a deflector stage. Control means are associated with the optical deflector means to define the spectral band in terms of center frequency and band width, and control means are associated therewith for displacing the spectral image over the detection module. An electronic control unit is provided to control the control means and to control the processor means in a plurality of operating modes, each of which comprises joint control of the selected spectral band, of the displacement of the spectral image, and of the processor means, for the purpose of selectively using a particular set of detector components.
Abstract:
A method of performing color calibration of a multispectral image sensor (MIS) includes obtaining test measurement data of at least one color chart that is measured by a test MIS under at least one lighting environment, obtaining reference measurement data of the at least one color chart that is measured by a reference MIS under the at least one lighting environment, the reference MIS being calibrated in advance, and generating, based on the test measurement data and the reference measurement data, at least one transformation model configured to transform measurements between the test MIS and the reference MIS.
Abstract:
A method of processing hyperspectral data includes receiving the hyperspectral data. The hyperspectral data includes spectral data for each pixel in a two-dimensional array of pixels, and for each spectral band in a set of multiple spectral bands associated with each pixel. The hyperspectral data is converted into one-dimensional spectra. Each one-dimensional spectrum includes, for a single pixel of the pixels, the spectral data for each spectral band in the set of multiple spectral bands associated with the single pixel. Each one-dimensional spectrum is inputted to a trained transformer neural network. For each one-dimensional spectrum, the trained transformer neural network is used to spectrally un-mix the spectral data in the set of multiple spectral bands.
Abstract:
In some implementations, a device may identify, based on spectroscopic data, a pseudo steady state end point indicating an end of a pseudo steady state associated with the blending process. The device may identify a reference block and a test block from the spectroscopic data based on the pseudo steady state end point. The device may generate a raw detection signal associated with the reference block and a raw detection signal associated with the test block. The device may generate a statistical detection signal based on the raw detection signal associated with the reference block and the raw detection signal associated with the test block. The device may determine whether the blending process has reached a steady state based on the statistical detection signal.
Abstract:
The invention relates to a characterization device (50) for characterizing a sample (S) comprising: a memory (MEM) storing a measured spectrum (As+p) of said sample, performed through a translucent material, and a measured spectrum of the translucent material (Ap), a processing unit (PU) configured to: determine a spectral energy (Es+p) of the measured spectrum (As+p) of the sample through the translucent material (As+p), estimate a coefficient ({circumflex over (γ)}) from said spectral energy (Es+p) and, determine a corrected spectrum (Âs) of the sample from the measured spectrum (As+p) of the sample through the translucent material and from a corrected spectrum of the translucent material (Âp), said corrected spectrum of the translucent material (Âp) being determined from the measured spectrum of the translucent material (Ap) and from the estimated coefficient ({circumflex over (γ)}).