Abstract:
An optical fiber environmental detection system comprising an interferometer, a broadband light source and a detector is disclosed. The interferometer further comprises a thin core fiber, a first single mode fiber and a second single mode fiber; wherein the thin core fiber is coupled to the first and second single mode fiber via a first junction and a second junction respectively. When an emission light reaches the first junction, high-order cladding modes will be excited. The excited cladding modes will interfere with the core mode at the second junction. The interferences determine the intensity maximum or minimum of the received signal. When there is an ambient environmental change, a shift of the received signal would be induced. According to the shift, environmental change, for instance ambient temperature, could be determined.
Abstract:
An optical fiber environmental detection system comprising an interferometer, a broadband light source and a detector is disclosed. The interferometer further comprises a thin core fiber, a first single mode fiber and a second single mode fiber; wherein the thin core fiber is coupled to the first and second single mode fiber via a first junction and a second junction respectively. When an emission light reaches the first junction, high-order cladding modes will be excited. The excited cladding modes will interfere with the core mode at the second junction. The interferences determine the intensity maximum or minimum of the received signal. When there is an ambient environmental change, a shift of the received signal would be induced. According to the shift, environmental change, for instance ambient temperature, could be determined.
Abstract:
A cavity thermal detector assembly is presented that allows both tunable narrowband and broadband operation. This allows for high light efficiency, low thermal time constant, and flexibility in designing the optical path. The thermal detector/filter layers are part of the top mirror or mirrors of a Gires-Tournois-type optical cavity and provide absorption and reflection that can be adjusted to the desired width and position of the detected band. Tuning, if desired, can be achieved by applying micromechanical methods. Broadband operation may be achieved by bringing the sensor close to the bottom mirror. In this mode, the sensor or its supports may or may not touch over a small area.
Abstract:
Image acquisition methods and systems are provided. The image acquisition system comprising a pixellated optical transducer capable of absorbing electromagnetic radiation in a first range of wavelengths received from an input source and also capable of absorbing electromagnetic radiation in a second range of wavelengths, an optical system, a detector and an analysis component, wherein each pixel in the pixellated optical transducer is substantially thermally isolated from each other pixel in the pixellated optical transducer and an image is obtained from alteration in optical thickness of one layer of material of the pixellated optical transducer.
Abstract:
A cavity thermal detector assembly is presented that allows both tunable narrowband and broadband operation. This allows for high light efficiency, low thermal time constant, and flexibility in designing the optical path. The thermal detector/filter layers are part of the top mirror or mirrors of a Gires-Tournois-type optical cavity and provide absorption and reflection that can be adjusted to the desired width and position of the detected band. Tuning, if desired, can be achieved by applying micromechanical methods. Broadband operation may be achieved by bringing the sensor close to the bottom mirror. In this mode, the sensor or its supports may or may not touch over a small area.
Abstract:
A thermo-optic system, which may be used for example in thermal imaging, includes an array of optical elements each having a thermally responsive optical property, the optical elements including signal elements and reference elements configured to provide (1) a common-mode response of the optical property to ambient temperature and (2) a differential-mode response of the optical property to a thermal signal appearing across the array of optical elements. The system also includes an optical readout subsystem configured to (1) illuminate the array of optical elements with optical energy at a readout wavelength corresponding to the optical property so as to generate a composite optical signal having common-mode and differential-mode signal components corresponding to the common-mode and differential-mode responses respectively of the signal and reference elements, and (2) filter the composite optical signal to generate a filtered optical signal being substantially the differential-mode image component.
Abstract:
The invention concerns a tandem interferometer for temperature sensing. The low coherence interferometry (LCI) system comprises a polarization-based sensing interferometer comprising a birefringent crystal having a sensor temperature sensitivity and a birefringence dispersion, and a readout interferometer being either a Fizeau interferometer using an optical wedge or a polarization interferometer using a birefringent wedge. In one embodiment of the invention, the birefringent crystal has dispersion properties similar to that of the birefringent wedge or that of the optical wedge of the readout interferometer. The present invention also provides a signal processing method for correcting the dispersion effect and for noise filtering in LCI-based optical sensors of the tandem interferometer arrangement.
Abstract:
An optical fiber sensor is provided for displacement measurement, pressure measurement, refractive index measurement, bio/chemical detection, and/or microscopy.