Abstract:
An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
Abstract:
A method for determining an analyte in a water sample with a mobile water analyzing system having a basic unit and a test element insertable in the basic unit, the method comprising providing the test element and the basic unit. The test element is inserted into a test element receptacle of the basic unit. The water sample is transported forward from an inlet opening to a measuring section of the test element. A first analyzing of the water sample is performed in the measuring section with an analyzer of the basic unit. The water sample is transported forward from the measuring section to the first reagent section of the test element. The water sample is transported backward from the first reagent section to the measuring section of the test element. A second analyzing of the water sample is performed in the measuring section with the analyzer of the basic unit.
Abstract:
An optical instrument is provided for simultaneously illuminating two or more spaced-apart reaction regions with excitation beams generated by a light source. The light source can include an area light array of light emitting diodes, one or more solid state lasers, one or more micro-wire lasers, or a combination thereof. According to various embodiments, a Fresnel lens can be disposed along a beam bath between the light source and the reaction regions. Methods of analysis using the optical instrument are also provided.
Abstract:
An instrument is provided that can monitor nucleic acid sequence amplification reactions, for example, PCR amplification of DNA and DNA fragments. The instrument includes a multi-notch filter disposed along one or both of an excitation beam path and an emission beam path. Methods are also provided for monitoring nucleic acid sequence amplifications using an instrument that includes a multi-notch filter disposed along a beam path.
Abstract:
An instrument for fluorometric assays in liquid samples is disclosed. The instrument may include multiple optical channels for monitoring a first fluorophore associated with a target analyte and a second fluorophore associated with a control. The disclosed instrument finds utility in any number of applications, including microfluidic molecular biological assays based on PCR amplification of target nucleic acids and fluorometric assays in general.
Abstract:
Gas analyzer systems and methods for determining gas flux in a short intake tube configuration without using any Webb-Pearman-Leuning density correction. Gas analyzer systems and methods for measuring concentrations of gasses and in particular dry mole fraction of components of a gas. The systems and method allow for rapid measurement of the gas density and/or dry mole fraction of gases for a number of environmental monitoring applications, including high speed flux measurements. A novel coupling design allows for tool-free removal of a cell enclosing a flow path to enable in field cleaning of optical components.
Abstract:
An optical apparatus for measurement of industrial chemical processes. The analyzer uses Raman scattering and performs measurement of chemical concentrations in continuous or batch processes. The analyzer operates at a standoff distance from the analyte (or analytes) and can measure concentrations through an optical port, facilitating continuous, non-destructive, and non-invasive analysis without extracting the analyte or analytes from the process. The analyzer can measure one or several solid, liquid, or gaseous analytes, or a mixture thereof.
Abstract:
The present disclosure is directed to an apparatus and method for studying dissolution of a compact sample. The compact sample is typically a pharmaceutical drug sample. A flow-through apparatus includes a frame defining a flow-through channel, a removable insert having a drug sample, the insert positioned within the frame such that a fluid interacts with the sample when the fluid passes through the flow channel. The frame has an opening on the top side to allow a glass plate, typically a microscope cover slip to be positioned within the frame and allow viewing of the fluid flow and interaction with the drug sample. The hydrodynamics of the fluid flow are either known or computed. Thus, dissolution can be studied and observed in view of hydrodynamic characteristics. Typically, only a small amount of sample is necessary for a study. The flow-through apparatus is designed to fit on a microscopy stage and allow visual observation of the fluid/sample interaction.
Abstract:
Gas analyzer systems and methods for measuring concentrations of gasses and in particular dry mole fraction of components of a gas. The systems and method allow for rapid measurement of the gas density and/or dry mole fraction of gases for a number of environmental monitoring applications, including high speed flux measurements. A novel coupling design allows for tool-free removal of a cell enclosing a flow path to enable in field cleaning of optical components.
Abstract:
A reagent cuvette has a first chamber with an inspection part and a socket, and a second chamber. The socket has four spikes at its base. Both chambers are sealed with a membrane. At the point-of-care the foil membrane of the first chamber is peeled away by the therapist (typically general practitioner doctor). A sample, such as blood, is added to the chamber using a pipette or other device to provide a verifiable quantity of sample. This provides a mixture of a buffer reagent supplied in the chamber and the sample injected into the inspection chamber at the point of care. The chamber is then inserted into the socket by gently pressing it down so that its foil membrane is broken by the spikes. This causes the starter reagent to drop down from within the second chamber into the inspection part of the first chamber. The inspection part is then inserted into an optical inspection instrument for analysis of the two reagents and the sample mixed together.